[bd22c4]: / eda / EAT / Proteomics_heatmap.R

Download this file

574 lines (450 with data), 23.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#### 01_EAT_Proteomics_ForUnsupervisedAnalysis.R #####
## Access DB SQlite where Proteomics data.
## Append patient meta information
library(DBI)
library(RSQLite)
library(pheatmap)
library(plyr)
library(RColorBrewer)
library(DelayedMatrixStats)
library(randomcoloR)
library(cluster)
Deane_proteins <- read.csv("H:/Projects/COVID19/Proteomics/Files/131ProteinsofInterest_UniProtID.csv",
header = TRUE, sep = ",", stringsAsFactors = FALSE)
##### Establish a connection with DB #####
con <- dbConnect(SQLite(), dbname = "P:/All_20200428_COVID_plasma_multiomics/SQLite Database/Covid-19 Study DB.sqlite")
##### Pull data from DB #####
dbListTables(con)
# [1] "biomolecules" "deidentified_patient_metadata" "lipidomics_measurements" "lipidomics_runs"
# [5] "metabolomics_measurements" "metabolomics_runs" "metadata" "omes"
# [9] "patient_metadata" "patient_samples" "proteomics_measurements" "proteomics_runs"
# [13] "rawfiles" "sqlite_sequence"
# Extract tables from SQLite database. The square prakets provide the first row or column names of table.
dbReadTable(con, "biomolecules")[0,]
dbReadTable(con, "metadata")[1:10,]
dbReadTable(con, "metabolomics_measurements")[0,]
dbReadTable(con, "metabolomics_runs")[0,]
dbReadTable(con, "biomolecules")[0,]
dbReadTable(con, "deidentified_patient_metadata")[0,]
dbReadTable(con, "proteomics_measurements")[0,]
#[1] measurement_id replicate_id biomolecule_id raw_abundance normalized_abundance raw_ibaq normalized_ibaq
dbReadTable(con, "proteomics_runs")[0,]
#[1] replicate_id rawfile_id unique_identifier
##### Knit tables into a long dataframe #####
df <- dbGetQuery(con, "SELECT proteomics_runs.unique_identifier, proteomics_measurements.normalized_abundance, proteomics_measurements.biomolecule_id, batch
FROM proteomics_measurements
INNER JOIN proteomics_runs ON proteomics_runs.replicate_id = proteomics_measurements.replicate_id
INNER JOIN rawfiles ON rawfiles.rawfile_id = proteomics_runs.rawfile_id
INNER JOIN biomolecules on biomolecules.biomolecule_id = proteomics_measurements.biomolecule_id
WHERE rawfiles.keep = 1
AND ome_id = 1
AND biomolecules.keep = '1'
")
# Select Sample_label, Gender, ICU_1, Mech_Ventilation from deidentified_patient_metadata
deidentified_patient_meta <- dbGetQuery(con, "SELECT Sample_label, Gender, ICU_1, Mech_Ventilation
FROM deidentified_patient_metadata
")
proteins_meta <- dbGetQuery(con, "SELECT standardized_name, metadata.biomolecule_id, metadata_type, metadata_value
FROM metadata
INNER JOIN biomolecules ON biomolecules.biomolecule_id = metadata.biomolecule_id
WHERE biomolecules.omics_id = 1
AND biomolecules.keep = 1
")
dbDisconnect(con)
##### Data formatting #####
# Reshape data into wide format with first two columns containing meta data
# Column names is "normalized_abundance.X" where X is the biomolecule.id
df_wide <- reshape(df, timevar = "biomolecule_id", v.names = "normalized_abundance",
idvar = "unique_identifier", direction = "wide" )
#136 samples and 519 protein groups
# Note HC were removed
# Match rawfiles to match "20200514_ES_HC_afterBatch1" -> "20200514_ES_COON_HC_afterBatch1_single-shot"
# HC_rows <- grep("HC",df_wide$unique_identifier)
#
# for(i in 1:length(HC_rows)){
# row_df <- HC_rows[i]
# old <- df_wide$unique_identifier[row_df]
# new <- gsub('^(.{11})(.*)$', '\\1_COON\\2', old)
# new <- gsub('^(.{31})(.*)$', '\\1_single-shot\\2', new)
#
# df_wide$unique_identifier[row_df] <- new
# }
##### Meta formatting #####
## meta contains the relevant information provided in the rawfile name (aka unique_identifier)
# Subset meta data and break up string by "_"
meta <- as.data.frame(stringr::str_split_fixed(df_wide$unique_identifier,"_",7))
# Fix typo in Disease state. Update factors and eleves
meta$V4 <- sub("19","", meta$V4)
meta$V4 <- as.factor(sub("-","",meta$V4))
meta$V4 <- sub("control","pooled_plasma",meta$V4)
batch_row <- grep("single",meta$V5)
for(i in 1:length(batch_row)){
row_meta <- batch_row[i]
v5 <- meta$V5[row_meta]
v6 <- meta$V6[row_meta]
#switch selected cells
meta$V5[row_meta] <- v6
meta$V6[row_meta] <- v5
#add a number to the pooled samples
meta$V7[row_meta] <- as.integer(i)
}
meta$V5 <- sub("*.atch","", meta$V5)
meta$V5 <- as.factor(sub("after","", meta$V5))
# Pad single digit numbers with a zero ex. 2 -> '02'
samples <- vector()
for (i in 1:nrow(meta)) {
if(nchar(as.character(meta$V7[i]),type = "char")==1){
one_sample <- paste0("0",meta$V7[i])
samples <- append(samples,one_sample)
}else{
one_sample <- as.character(meta$V7[i])
samples <- append(samples,one_sample)
}
}
#overwrite sample_number padded with a zero if single digit
meta$V7 <- samples
meta$V7 <- sub("_.*","",meta$V7)
meta$V8 <- paste0(meta$V4,"_",meta$V7)
# The patient id's are used more than once.
# To make all id's unique, the make.unique function will add numbers to each duplicated entry
meta$V9 <- make.unique(as.character(meta$V8))
#add batch info column
meta <- meta[,c(1,4,5,7,8,9)]
#rename meta columns
colnames(meta) <- c("Rawfile.Date.Stamp","Disease.State", "Batch",
"Padded.Patient.Number", "Sample_Label",
"Sample_Label.unique")
##### Protein meta formattting #####
proteins_meta <- proteins_meta[which(proteins_meta$metadata_type == "gene_name"),]
# Isolate only the first protein in protein group for Majority.protein.IDs and Protein.IDs
majorityProtein <- lapply(strsplit(proteins_meta$standardized_name, ";"), '[', 1)
proteins_meta$majority.protein <- vapply(majorityProtein, paste, collapse = ", ", character(1L))
##### Prepare for heatmap ######
# Subset dataframe to include abunance values only
proteomics <- df_wide[,c(3:ncol(df_wide))]
# rename row names to Patient unique Id. (non-duplicated)
rownames(proteomics) <- meta$Sample_Label.unique
# rename columns to only the metabolite unique identifier
colnames(proteomics) <- sub(".*abundance.","",colnames(proteomics))
# Annotations for patients
patient_annotation <- meta[,c(2,3)]
patient_annotation$Disease.State <- as.factor(patient_annotation$Disease.State)
rownames(patient_annotation) <- meta$Sample_Label.unique
#patient_annotation$Date <- as.Date(patient_annotation$Date)
##### Plot Heatmap #####
my_colour = list(
Disease.State = c( `COVID` = "#D0D3CA", `NONCOVID` = "#A3A79D", `pooled_plasma` = "#191919"),
Batch = c(`1` = "#FDF0FE", `2` = "#E8C5E9", `3` = "#9FA0C3", `4` = "#8B687F", `5` = "#7B435B", `6` = "#5C3344", `7` = "#1C093D"))
scaleRYG <- colorRampPalette(c("#3C99B2","#E8CB2E","#EF2D00"), space = "rgb")(20)
pheatmap(t(proteomics),
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation,
cluster_cols = F,
#scale = "column",
show_colnames = F,
show_rownames = F,
main = "Proteomics COVID-19 HeatMap")
#### Remove Controls ####
## Create a heatmap without Controls and append more patient metadata
##### Patient Meta formatting ####
# Remove controls from meta
#meta_patientONLY <- meta[-grep("HC",meta$Sample_Label.unique),]
meta_patientONLY <- meta[-grep("pooled",meta$Sample_Label.unique),]
# What patient meta information is missing?
PatientSample_Missing <- meta_patientONLY[which(!meta_patientONLY$Sample_Label %in% deidentified_patient_meta$Sample_label),]
if(length(which(!deidentified_patient_meta$Sample_label %in% meta_patientONLY$Sample_Label)) == 0){
Deident_patientSample_Missing <- NULL
}else{
Deident_patientSample_Missing <- deidentified_patient_meta[which(!deidentified_patient_meta$Sample_label %in% meta_patientONLY$Sample_Label),]
}
#Missing samples in Patient meta data
# Rawfile.Date.Stamp Disease.State Batch Padded.Patient.Number Sample_Label Sample_Label.unique
# 94 202005010 NONCOVID 5 26 NONCOVID_26 NONCOVID_26
# match sample labels in meta and deidentified_patient_meta == All but one match 129 samples == 128 samples
meta_patientONLY <- meta_patientONLY[which(meta_patientONLY$Sample_Label.unique %in% deidentified_patient_meta$Sample_label),]
# reorder deidentified_patient_meta data to match sample label in meta_patientONLY
#deidentified_patient_meta <- deidentified_patient_meta[-which(rownames(deidentified_patient_meta) %in% rownames(Deident_patientSample_Missing)),]
deidentified_patient_meta_ordered <- deidentified_patient_meta[order(match(deidentified_patient_meta$Sample_label,meta_patientONLY$Sample_Label)),]
# Merge deidentified_patient_meta with meta_patientONLY by sample label
meta_patientONLY_merged <- merge(meta_patientONLY,deidentified_patient_meta_ordered, by.x = "Sample_Label", by.y = "Sample_label" )
#write.csv(meta_patientONLY_merged, "P:/All_20200428_COVID_plasma_multiomics/Proteomics/EAT_unsupervised_analysis/Meta_Proteomics_PatientsONLY.csv")
##### Data without Controls #####
# Remove rows that are connected with Control Data (128 x 517)
proteomics_noControls <- proteomics[which(rownames(proteomics) %in% meta_patientONLY_merged$Sample_Label),]
# For metaboanalyst
Disease.state <- sub("_.*", "",rownames(proteomics_noControls))
metaboanalyst_df <- cbind(Disease.state,proteomics_noControls)
metaboanalyst_df <- t(metaboanalyst_df)
rownames(metaboanalyst_df) <- c("Disease.state",proteins_meta$majority.protein)
#write.csv(metaboanalyst_df, file = "H:/Projects/COVID19/Proteomics/Files/metaboanalyst_COVID_proteomics_onlyPatients_normalized.csv")
# Annotations for patients
patient_annotation <- meta_patientONLY_merged[,c(3,4,7,8,9)]
patient_annotation$Gender <- factor(patient_annotation$Gender, levels = c("F","M"))
# Substitute all 0 -> NO and 1 -> Yes in ICU_1
patient_annotation$ICU_1 <- as.character(patient_annotation$ICU_1)
patient_annotation$ICU_1 <- sub("0","No",patient_annotation$ICU_1)
patient_annotation$ICU_1 <- sub("1","Yes",patient_annotation$ICU_1)
patient_annotation$ICU_1 <- factor(patient_annotation$ICU_1, levels = c("No","Yes"))
# Substitute all 1 -> NO and 1 -> Yes in ICU_1
patient_annotation$Mech_Ventilation <- as.character(patient_annotation$Mech_Ventilation)
patient_annotation$Mech_Ventilation <- sub("0","No",patient_annotation$Mech_Ventilation)
patient_annotation$Mech_Ventilation <- sub("1","Yes",patient_annotation$Mech_Ventilation)
patient_annotation$Mech_Ventilation <- factor(patient_annotation$Mech_Ventilation, levels = c("No","Yes"))
rownames(patient_annotation) <- meta_patientONLY_merged$Sample_Label
my_colour = list(
Disease.State = c( `COVID` = "#D0D3CA", `NONCOVID` = "#A3A79D"),
Batch = c(`1` = "#FDF0FE", `2` = "#E8C5E9", `3` = "#9FA0C3", `4` = "#8B687F", `5` = "#7B435B", `6` = "#5C3344", `7` = "#1C093D"),
Gender = c(`F` = "#C0B9DD", `M` = "#234947"),
ICU_1 = c(`No` = "#D0D3CA", `Yes` = "#368BA4"),
Mech_Ventilation = c(`No` = "#D0D3CA", `Yes` = "#463F3A"))
#scaleRYG <- colorRampPalette(c("#3C99B2","#E8CB2E","#EF2D00"), space = "rgb")(20)
#scaleRYG <- colorRampPalette(c("#3C99B2","#ffffff","#EF2D00"), space = "rgb")(20)
out <- pheatmap(t(proteomics_noControls),
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation,
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Proteomics COVID-19 patients only HeatMap")
# Plot extracted gene-t0-cluster assignments
plot(out$tree_col)
#### Coagulation Cascade ####
coagulation_proteins_meta <- proteins_meta[which(proteins_meta$majority.protein %in% Deane_proteins$UniProt.ID),]
coagulation_proteomics <- proteomics_noControls[,which(colnames(proteomics_noControls) %in% coagulation_proteins_meta$biomolecule_id)]
colnames(coagulation_proteomics) <- coagulation_proteins_meta$majority.protein
coagulation_proteomics_COVID <- coagulation_proteomics[-grep("NONCOVID",rownames(coagulation_proteomics)),]
coagulation_proteomics_NONCOVID <- coagulation_proteomics[grep("NONCOVID",rownames(coagulation_proteomics)),]
out <- pheatmap(t(coagulation_proteomics),
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation,
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Coagulation Proteins of Interest\n COVID-19 patients only HeatMap")
plot(out$tree_row,
main = "Dendogram of Proteins in Subset - coagulation ")
plot(out$tree_col,
main = "Dendogram of Patients in subset - coagulation")
##### Exploratory Figures #####
proteomics_COVID <- t(proteomics_noControls)
rownames(proteomics_COVID) <- proteins_meta$majority.protein
proteomics_NONCOVID <- proteomics_COVID[,grep("NONCOVID",colnames(proteomics_COVID))]
proteomics_COVID <- proteomics_COVID[,-grep("NONCOVID",colnames(proteomics_COVID))]
# Boxplot of unknown proteomics
boxplot(proteomics_COVID,
main = "Boxplot of COVID proteomics",
ylab = "Log2(Intensity)")
par(mar = c(22.1, 4.1, 4.1, 4.1) # change the margins bottow, left, top, and right
#lwd = 2, # increase the line thickness
#cex.axis = 1.2 # increase default axis label size
)
# Boxplot of COVID proteomics
boxplot(proteomics_COVID,
main = "Boxplot of COVID proteomics",
ylab = "Log2(Intensity)",
las = 1,
xaxt = "n")
text(x = 1:length(colnames(proteomics_COVID)),
y = par("usr")[3] - 0.30, #subtract from y axis to push labels down
labels = colnames(proteomics_COVID),
xpd = NA, #print below axis
srt = 90,
adj = 1)
# > median(proteomics_COVID)
# [1] 26.30916
# > mean(proteomics_COVID)
# [1] 26.72138
par(mar = c(10, 4.1, 4.1, 4.1) # change the margins bottow, left, top, and right
#lwd = 2, # increase the line thickness
#cex.axis = 1.2 # increase default axis label size
)
# Boxplot of NONCOVID proteomics
boxplot(proteomics_NONCOVID,
main = "Boxplot of NONCOVID proteomics",
ylab = "Log2(Intensity)",
las = 1,
xaxt = "n")
text(x = 1:length(colnames(proteomics_NONCOVID)),
y = par("usr")[3] - 0.30, #subtract from y axis to push labels down
labels = colnames(proteomics_NONCOVID),
xpd = NA, #print below axis
srt = 90,
adj = 1)
# Histogram of Unknowns and Knowns
par(mar = c(6.1, 4.1, 4.1, 4.1) # change the margins bottow, left, top, and right
#lwd = 2, # increase the line thickness
#cex.axis = 1.2 # increase default axis label size
)
ICU <- patient_annotation[which(patient_annotation$ICU_1 == "Yes"),]
noICU <- patient_annotation[which(patient_annotation$ICU_1 == "No"),]
# NONCOVID ICU vs. noICU histograms
noICU_NONCOVID <- noICU[grep("NONCOVID",rownames(noICU)),]
ICU_NONCOVID <- ICU[grep("NONCOVID",rownames(ICU)),]
proteomics_NONCOVID_noICU <- proteomics_NONCOVID[,which(colnames(proteomics_NONCOVID) %in% rownames(noICU_NONCOVID))]
proteomics_NONCOVID_ICU <- proteomics_NONCOVID[,which(colnames(proteomics_NONCOVID) %in% rownames(ICU_NONCOVID))]
hist(proteomics_NONCOVID_ICU,
main = "Histogram of NONCOVID in ICU samples\n features Log2(Intensity)",
xlab = "Log2(Intensity)",
#xlim = c(0,30),
las = 1,
breaks = 20)
abline(v= median(proteomics_NONCOVID_ICU), col = "red", lwd = 2)
# median of NONCOVID patients in the ICU 26.00141
hist(proteomics_NONCOVID_noICU,
main = "Histogram of NONCOVID NOT in the ICU samples\n features Log2(Intensity)",
xlab = "Log2(Intensity)",
#xlim = c(0,30),
las = 1,
breaks = 20)
abline(v= median(proteomics_NONCOVID_noICU), col = "red", lwd = 2)
# median of NONCOVID patients in the ICU 25.95939
# COVID ICU vs noICU histograms
noICU_COVID <- noICU[-grep("NONCOVID",rownames(noICU)),]
ICU_COVID <- ICU[-grep("NONCOVID",rownames(ICU)),]
proteomics_COVID_noICU <- proteomics_COVID[,which(colnames(proteomics_COVID) %in% rownames(noICU_COVID))]
proteomics_COVID_ICU <- proteomics_COVID[,which(colnames(proteomics_COVID) %in% rownames(ICU_COVID))]
hist(proteomics_COVID_ICU,
main = "Histogram of COVID in ICU samples\n features Log2(Intensity)",
xlab = "Log2(Intensity)",
#xlim = c(0,30),
las = 1,
breaks = 20)
abline(v= median(proteomics_COVID_ICU), col = "red", lwd = 2)
# median of NONCOVID patients in the ICU 26.38699
hist(proteomics_COVID_noICU,
main = "Histogram of COVID NOT in the ICU samples\n features Log2(Intensity)",
xlab = "Log2(Intensity)",
#xlim = c(0,30),
las = 1,
breaks = 20)
abline(v= median(proteomics_COVID_noICU), col = "red", lwd = 2)
# median of NONCOVID patients in the ICU 26.22727
##### Fold Change to Median NONCOVID #####
# Calculate the median for each column = metabolite/feature
NONCOVID_Median.ProteinIntensity <- rowMedians(as.matrix(proteomics_NONCOVID))
# Foldchange function -> take every row and divide it by the median vector
fold_change.FUNC <- function(x) x-NONCOVID_Median.ProteinIntensity
df_fc <- apply(proteomics_COVID,2, fold_change.FUNC)
# New color palette patients
my_colour = list(
Gender = c(`F` = "#C0B9DD", `M` = "#234947"),
Batch = c(`1` = "#FDF0FE", `2` = "#E8C5E9", `3` = "#9FA0C3", `4` = "#8B687F", `5` = "#7B435B", `6` = "#5C3344", `7` = "#1C093D"),
ICU_1 = c(`No` = "#D0D3CA", `Yes` = "#368BA4"),
Mech_Ventilation = c(`No` = "#D0D3CA", `Yes` = "#463F3A"))
# Heatmap of the Fold Change calculated from the median in NONCOVID cohort
scaleRYG <- colorRampPalette(c("#3C99B2","#ffffff","#EF2D00"), space = "rgb")(20)
out <- pheatmap(df_fc,
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation[-grep("NONCOVID",rownames(patient_annotation)),-c(1)],
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Heatmap Fold Change COVID/NONCOVID(median)")
plot(out$tree_col,
main = "Fold Change COVID/NONCOVID(median)\n Patients")
#Export fold change data frame ordered by protein clustering
# Re-0rder original data (proteins) to match ordering in heatmap (top-to-bottom)
df_fc_export <- df_fc[rownames(df_fc[out$tree_row[["order"]],]),colnames(df_fc[,out$tree_col[["order"]]])]
#write.csv(df_fc_export, file = "P:/All_20200428_COVID_plasma_multiomics/Proteomics/EAT_unsupervised_analysis/COVID_proteomics_Heatmap_COVIDrelativeNONCOVIDmedian.csv")
# Histogram of Fold Changes
par(mar = c(6.1, 4.1, 4.1, 4.1))
hist(df_fc,
main = "Histogram of Fold Changes COVID relative to NONCOVID",
xlab = "Fold Change in Log2 space",
xlim = c(-15,15),
breaks = 50)
# Protein groups with fold change greater than 1.2
table(rowSums(abs(df_fc)>1.2)>0)
# Protein groups with fold change greater than 2
table(rowSums(abs(df_fc)>2)>0)
# Protein groups with fold change greater than 4
table(rowSums(abs(df_fc)>4)>0)
# Protein groups with fold change greater than 8
table(rowSums(abs(df_fc)>8)>0)
# subset features with fold change greater than 4.2 to cluster
important_features_foldchange <- df_fc[rowSums(abs(df_fc)>6.2)>0,]
out <- pheatmap(important_features_foldchange,
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation[-grep("NONCOVID",rownames(patient_annotation)),-c(1)],
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Heatmap Fold Change COVID/NONCOVID(median)\n Subset Features that have abs(FC) > 6.2 in at least one patient")
##### Fold Change Median of NONCOVID not in ICU ####
# Calculate the median for each column = metabolite/feature
NONCOVID_NOICU_Median.ProteinIntensity <- rowMedians(as.matrix(proteomics_NONCOVID_noICU))
# Foldchange function -> take every row and divide it by the median vector
fold_change.FUNC <- function(x) x-NONCOVID_NOICU_Median.ProteinIntensity
df_fc <- apply(proteomics_COVID,2, fold_change.FUNC)
# Heatmap of the Fold Change calculated from the median in NONCOVID cohort
scaleRYG <- colorRampPalette(c("#3C99B2","#ffffff","#EF2D00"), space = "rgb")(20)
pheatmap(df_fc,
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation[-grep("NONCOVID",rownames(patient_annotation)),-c(1)],
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Heatmap Fold Change COVID/NONCOVID not in the ICU(median)")
##### Fold Change Median of NONCOVID not in ICU ####
# Calculate the median for each column = metabolite/feature
NONCOVID_NOICU_Median <- rowMedians(proteomics_NONCOVID_noICU)
# Foldchange function -> take every row and divide it by the median vector
fold_change.FUNC <- function(x) x-NONCOVID_NOICU_Median
df_fc <- apply(proteomics_COVID,2, fold_change.FUNC)
# Heatmap of the Fold Change calculated from the median in NONCOVID cohort
scaleRYG <- colorRampPalette(c("#3C99B2","#ffffff","#EF2D00"), space = "rgb")(20)
pheatmap(df_fc,
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation[-grep("NONCOVID",rownames(patient_annotation)),-c(1)],
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Heatmap Fold Change COVID/NONCOVID not in the ICU(median)")
##### Fold Change in Coagulation Subset ######
# Calculate the median for each column = metabolite/feature
NONCOVID_Coagulation_Median.ProteinIntensity <- colMedians(as.matrix(coagulation_proteomics_NONCOVID))
# Foldchange function -> take every row and divide it by the median vector
fold_change.FUNC <- function(x) x-NONCOVID_Coagulation_Median.ProteinIntensity
df_fc <- apply(coagulation_proteomics_COVID,1, fold_change.FUNC)
# Heatmap of the Fold Change calculated from the median in NONCOVID cohort
scaleRYG <- colorRampPalette(c("#3C99B2","#ffffff","#EF2D00"), space = "rgb")(20)
out <- pheatmap(df_fc,
color = scaleRYG,
annotation_colors = my_colour,
annotation_col = patient_annotation[-grep("NONCOVID",rownames(patient_annotation)),-c(1)],
#annotation_row = metabolite_annotation,
cluster_cols = T,
#scale = "column",
show_colnames = F,
show_rownames = F,
#scale = "row",
main = "Heatmap Fold Change COVID/NONCOVID(median) in Coagulation Subset Proteins")
plot(out$tree_row,
main = "Dendogram of Proteins\n Fold Change COVID/NONCOVID(median) in Coagulation Subset")
plot(out$tree_col,
main = "Dendogram of COVID Patients\n Fold Change COVID/NONCOVID(median) in Coagulation Subset")