[16eabd]: / 6-Figure scripts / Fig E4.r

Download this file

167 lines (120 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
library(data.table)
library(dplyr)
library(reshape2)
library(ggplot2)
library(ggdendro)
library(readxl)
library(ggpubr)
# Figure E4b ----------------------------------
dat <- read_excel("Fig E4 Source Data.xlsx", sheet = "E4b Prop of Mediation All")
# normalize
dat.dt <- dat
dat.dt$InflammationType <- sapply(strsplit(dat.dt$Group,"_",fixed = T),"[[",1 )
dat.dt$Path <- sapply(dat.dt$Group,
function(x){
parts <- strsplit(x, "_", fixed = T)[[1]]
paste(parts[2:length(parts)], collapse = "-")
})
dat.dt$Path <- factor(dat.dt$Path, levels = c("MetaG-MetaB","MetaB-Trans","Trans-Spuprot","Trans-Serprot"))
dat.dt$InflammationType <- factor(dat.dt$InflammationType,levels = c("NEU","EOS"))
dat.dt <- dat.dt %>% arrange(Path) %>% arrange(InflammationType)
dat.dt$Group <- factor(dat.dt$Group, levels = rev(unique(dat.dt$Group)))
FigE4b <- ggplot(dat.dt ,
aes(x=Group, y=Mediation_Proportion))+
geom_violin(aes(fill=Path),trim = T, scale = "width", alpha=0.5)+
geom_boxplot(width=0.1, outlier.shape = NA) +
scale_fill_manual(values = c("#F8766D","#CD9600","#7CAE00","#00BE67")) +
theme_bw()+ theme(panel.grid = element_blank(),
axis.text.x = element_blank())+
coord_flip()
FigE4b
# Figure E4c ----------------------------------
dat <- read_excel("Fig E4 Source Data.xlsx", sheet = "E4c Reverse Mediation")
plotDat <- dat %>%
mutate(Forward = ABC_Prop, Reverse = ACB_Prop) %>%
reshape2::melt(id.vars=c("Comparison","Type")) %>%
dplyr::filter(variable %in% c("Forward", "Reverse"))
plotDat$Type <- factor(plotDat$Type,
levels = c("MetaG-MetaB-NEU","MetaB-HostT-NEU","MetaG-MetaB-EOS","MetaB-HostT-EOS"))
FigE4c <- ggpaired(plotDat, x = "variable", y = "value",
color = "variable", line.color = "gray", line.size = 0.4)+
stat_compare_means(paired = TRUE) +
facet_wrap(vars(Type), scales = "free", ncol = 4)+
theme_bw()+theme(panel.grid = element_blank())
FigE4c
# Figure E4e ----------------------------------
# Fig E4e. LOSO density plot #######
rm(list = ls())
dat.hist <- read_excel("Fig E4 Source Data.xlsx4", sheet = "E4e LOSO")
colnames(dat.hist) <- c("Figs_map", "Figs_color","species","X1")
dat.hist <- dat.hist %>% mutate(X2=X1, Y1=-0.002, Y2=-0.009)
taxonomy_df <- read_excel("Fig E4 Source Data.xlsx4", sheet = "E4e taxonomy")
genus <- sapply(strsplit(dat.hist$species,"_", fixed = T),"[[", 1)
genus[!genus %in% taxonomy_df$Genus]
phylum <- sapply(genus,
function(x){
if(x %in% taxonomy_df$Genus) {
taxonomy_df$Phylum[which(taxonomy_df$Genus == x)[1]]
}else "Unclassified"
})
phylum_color_df <- cbind.data.frame(phylum=c("Bacteroidetes","Actinobacteria","TM7","Proteobacteria","Firmicutes","other"),
colors=c("#EF5656","#47B3DA","#9A8FC3","#F7A415","#2BB065","#BABABA"),
stringsAsFactors=F)
dat.hist$phylum <- phylum
dat.hist$phylum_other <- sapply(dat.hist$phylum, function(x)if(x %in% phylum_color_df$phylum) x else "other")
Fig.map_ymax_df <- cbind.data.frame(Fig.map = unique(dat.hist$Figs_map),
# ymax=c(0.04,0.16,0.03,0.015,0.035,0.038),
ymax = c(0.06,0.19, 0.06, 0.05),
stringsAsFactors=F)
for(Fig in unique(dat.hist$Figs_map)){
#Fig=unique(dat.hist$Figs_map)[1]
ymax = Fig.map_ymax_df$ymax[which(Fig.map_ymax_df$Fig.map == Fig)]
dat_sub <- dat.hist %>% filter(Figs_map %in% Fig)
phylum_ABC <- unique(dat_sub$phylum_other)[order(unique(dat_sub$phylum_other))]
phylum_rank <- c(phylum_ABC[phylum_ABC != "other"],"other")
dat_sub$phylum_other <- factor(dat_sub$phylum_other,
levels = phylum_rank)
Colors <- sapply(phylum_rank, function(x) phylum_color_df$colors[which(phylum_color_df$phylum ==x)])
histP <- ggplot(dat_sub) +
geom_density(aes(x=X1,y=(..count..)/sum(..count..)),fill = "gray") + ylab("Density") +
xlab("") +
theme_bw()+theme(panel.grid = element_blank()) +
ylim(-0.01,ymax) +
geom_segment(aes(x = X1, y = Y1, xend = X2, yend = Y2, color=phylum_other )) +
scale_color_manual(values = Colors) +
theme(legend.position = "none") + ggtitle(Fig)
histP
assign(paste("histP_", Fig, sep = ""), histP, envir = .GlobalEnv)
}
histP_MetaG_M00044
histP_MetaG_P00250
histP_MetaG_P00380
histP_MetaG_P00564
library(ggpubr)
FigE4e.LOSO <- ggarrange(histP_MetaG_P00380, histP_MetaG_M00044, histP_MetaG_P00250, histP_MetaG_P00564, ncol = 1)
#ggsave(FigE4e.LOSO,device = "pdf", filename = "FigE4e.KOcontri.pdf", width = 3, height = 10)
# Fig E4e. KO contribution #######
zscore_df <- read_excel("Fig E4 Source Data.xlsx", sheet = "E4e KO contrib" )
colnames(zscore_df) <- c("K","sp","score")
tmp <- zscore.top3_df <- zscore_df %>%
group_by(K) %>%
top_n(n = 3, wt = score) %>% as.data.frame()
tmp <- tmp %>% arrange(desc(score)) %>% arrange(K)
zscore.top3_df <- tmp %>% #keep the top 3 with highest score
mutate(X = rep(c("X1","X2","X3"), length(unique(zscore_df$K)))) %>%
mutate(genus = sapply(strsplit(sp," ", fixed = T),"[[", 1)) %>%
mutate(phylum = sapply(genus,
function(x){
if(x %in% taxonomy_df$Genus){
taxonomy_df$Phylum[which(taxonomy_df$Genus == x)[1]]
}else "Unclassified"
} ) ) %>%
mutate(phylum_other = sapply(phylum, function(x) if(x %in% phylum_color_df$phylum) x else "other"))
zscore.top3_df$phylum_other <- factor(zscore.top3_df$phylum_other, levels = phylum_rank)
FigE4e.KOcontri <- ggplot(zscore.top3_df) +
geom_point(aes(x=X, y=K, size=score, fill=phylum_other), shape=21) +
scale_fill_manual(values = Colors) +
scale_size (range = c (3, 6)) +
theme(panel.grid = element_blank(), axis.title = element_blank(), panel.background = element_blank(),
axis.text.x = element_blank(), legend.position = "none", axis.ticks = element_blank())
FigE4e.KOcontri