# files required:
# 1) "4_MetaG.MetaB.modules.linked.txt": resulting data generated from script "7.MetaG.MetaB.link.r"
# 2) "1_metaG-combined.gct" MetaG module abundance table without excluding any species
# 3) "1_metaB.module_eigengene.txt" MetaB abundance table generated by script "1.WGCNA_metabolomics.r"
# 4) the directory "LOSO_metaG_DR" contains all ssGSEA output files named as "speciesX-combined.gct", one for each species removed
# output:
# "LOSO_delta.spearman.r.txt" file recording delta.spearman.r for each MetaG module - MetaB module - species combination
## ##########################################################################################
##
## libraries
##
## ##########################################################################################
# if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
# if (!requireNamespace("cmapR", quietly = TRUE)) BiocManager::install("cmapR")
# library(cmapR)
library(doParallel)
library(dplyr)
library(data.table)
## ##########################################################################################
##
## import data
##
## ##########################################################################################
log.file = "LOSO.deltaR.log"
error.file = "LOSO.deltaR.error.txt"
cat(paste(as.character(Sys.time()), '\n'), file=log.file, append=T)
cat('Importing data: \n', file=log.file, append=T)
module.pairs = fread("4_MetaG.MetaB.modules.NEU.linked.txt", select = 1, data.table = F) %>%
mutate(MetaG.module = sapply(strsplit(MetaG.MetaB_modulePair,"_", fixed = T),"[[", 1)) %>%
mutate(MetaB.module = sapply(strsplit(MetaG.MetaB_modulePair,"_", fixed = T),"[[", 2))
# MetaG original module data
input.ds <- "metaG-combined.gct"
gct.unique <- NULL
dataset <- try(parse.gctx(input.ds), silent = T)
if(class(dataset) != 'try-error' ){
m <- dataset@mat
gene.names <- dataset@rid
gene.descs <- dataset@rdesc
sample.names <- dataset@cid
sample.descs <- dataset@cdesc
} else {
## - cmapR functions stop if ids are not unique
## - import gct using readLines and make ids unique
if(length(grep('rid must be unique', dataset) ) > 0) {
gct.tmp <- readLines(input.ds)
#first column
rid <- gct.tmp %>% sub('\t.*','', .)
#gct version
ver <- rid[1]
#data and meta data columns
meta <- strsplit(gct.tmp[2], '\t') %>% unlist() %>% as.numeric()
if(ver=='#1.3')
rid.idx <- (meta[4]+3) : length(rid)
else
rid.idx <- 4:length(rid)
#check whether ids are unique
if(length(rid[rid.idx]) > length(unique(rid[rid.idx]))){
warning('rids not unique! Making ids unique and exporting new GCT file...\n\n')
#make unique
rid[rid.idx] <- make.unique(rid[rid.idx], sep='_')
#other columns
rest <- gct.tmp %>% sub('.*?\t','', .)
rest[1] <- ''
gct.tmp2 <- paste(rid, rest, sep='\t')
gct.tmp2[1] <- sub('\t.*','',gct.tmp2[1])
#export
gct.unique <- sub('\\.gct', '_unique.gct', input.ds)
writeLines(gct.tmp2, con=gct.unique)
#import using cmapR functions
dataset <- parse.gctx(fname = gct.unique)
## extract data
m <- dataset@mat
gene.names <- sub('_[0-9]{1,5}$', '', dataset@rid)
gene.descs <- dataset@rdesc
sample.names <- dataset@cid
sample.descs <- dataset@cdesc
}
} else { #end if 'rid not unique'
########################################################
## display a more detailed error message if the import
## failed due to other reasons than redundant 'rid'
stop("\n\nError importing GCT file using 'cmapR::parse.gctx()'. Possible reasons:\n\n1) Please check whether you have the latest version of the 'cmapR' installed. Due to submission to Bioconductor the cmap team changed some naming conventions, e.g 'parse.gctx()' has been renamed to 'parse.gctx()'.\n2) The GCT file doesn't seem to be in the correct format! Please see take a look at https://clue.io/connectopedia/gct_format for details about GCT format.
\nError message returned by 'cmapR::parse.gctx()':\n\n", dataset, '\n\n')
}
} #end if try-error
MetaG.mod.bf <- m %>% t() %>% data.frame()
#head(MetaG.mod.bf[,1:6])
# MetaB module data
m1 <- fread("metaB.module_eigengene.txt",data.table = F) %>%
dplyr::filter(!grepl("#",`#NAME`,fixed=T))
m1[-1] <- sapply(m1[-1], as.numeric)
m1 <- m1 %>% tibble::column_to_rownames("#NAME")
feature.abb_df1 <- cbind.data.frame(feature = rownames(m1),
abb = paste("feature",seq(1,nrow(m1),1),sep = ""),
stringsAsFactors = F)
rownames(m1) <- sapply(rownames(m1), function(x) feature.abb_df1$abb[which(feature.abb_df1$feature == x)])
m1 <- t(m1) %>% as.data.frame(stringsAsFactors=F)
colnames(m1) <- sapply(colnames(m1), function(x) feature.abb_df1$feature[which(feature.abb_df1$abb == x)])
MetaB.mod <- m1
#head(MetaB.mod[,1:6])
#all(rownames(MetaB.mod) %in% rownames(MetaG.mod.bf))
MetaG.B.bf <- merge(MetaG.mod.bf, MetaB.mod, by=0)
MetaG.B.bf <- MetaG.B.bf[complete.cases(MetaG.B.bf),] # remove NA because otherwise spearman r might be NA
## ##########################################################################################
##
## LOSO analysis
##
## ##########################################################################################
cat('Starting LOSO analysis: \n', file=log.file, append=T)
MetaG.mod.after.dir = "LOSO_metaG_DR"
AllSpecies = sub("\\-combined\\.gct","", basename(list.files(MetaG.mod.after.dir,full.names = T, pattern = "combined.gct")))
if(length(AllSpecies) == 0) stop("\n\nError importing GCT file, GCT file names must contain '-combined.gct' as exported by ssGSEA2 function\n\n")
# combination of the module pairs and species
allCombs <- expand.grid(paste(module.pairs$MetaG.module, module.pairs$MetaB.module, sep = "_"),
AllSpecies)
moduelPair.res <- NULL
for( i in c(1:nrow(allCombs))){
mdp = strsplit(as.character(allCombs$Var1[i]), "_", fixed = T)[[1]]
metaG.md = sub("MetaG\\.", "", mdp[1] )
metaB.md = sub("MetaB\\.", "", mdp[2])
r.bf = cor(MetaG.B.bf[,metaG.md], MetaG.B.bf[,metaB.md], method = "spearman")
spc = as.character(allCombs$Var2[i])
spc.mod.files = list.files(MetaG.mod.after.dir, full.names = T, pattern = spc)
spc.mod.file = spc.mod.files[grepl("-combined.gct", spc.mod.files, fixed = T)]
# cat(paste('module pairs: ', paste(mdp,collapse = " | "), " \nSpecies: ",spc,"\n", sep=""), file=log.file, append=T)
if(i %% 100 == 0) cat(paste("-----------progress: ",i," out of ", nrow(allCombs), " combinations.", sep = ""), file=log.file, append=T)
m <- NA
readGctx_success <- F
if(T){
input.ds <- spc.mod.file
gct.unique <- NULL
dataset <- try(parse.gctx(input.ds), silent = T)
if(class(dataset) != 'try-error' ){
m <- dataset@mat
gene.names <- dataset@rid
gene.descs <- dataset@rdesc
sample.names <- dataset@cid
sample.descs <- dataset@cdesc
readGctx_success <- T
} else {
## - cmapR functions stop if ids are not unique
## - import gct using readLines and make ids unique
if(length(grep('rid must be unique', dataset) ) > 0) {
gct.tmp <- readLines(input.ds)
#first column
#rid <- gct.tmp %>% sub('\t.*','', .)
rid <- sub('\t.*','', gct.tmp)
#gct version
ver <- rid[1]
#data and meta data columns
meta <- as.numeric( unlist( strsplit(gct.tmp[2], '\t')))
if(ver=='#1.3'){rid.idx <- (meta[4]+3) : length(rid)} else {rid.idx <- 4:length(rid)}
#check whether ids are unique
if(length(rid[rid.idx]) > length(unique(rid[rid.idx]))){
warning('rids not unique! Making ids unique and exporting new GCT file...\n\n')
#make unique
rid[rid.idx] <- make.unique(rid[rid.idx], sep='_')
#other columns
rest <- sub('.*?\t','', gct.tmp)
rest[1] <- ''
gct.tmp2 <- paste(rid, rest, sep='\t')
gct.tmp2[1] <- sub('\t.*','',gct.tmp2[1])
#export
gct.unique <- sub('\\.gct', '_unique.gct', input.ds)
writeLines(gct.tmp2, con=gct.unique)
#import using cmapR functions
dataset <- parse.gctx(fname = gct.unique)
## extract data
m <- dataset@mat
gene.names <- sub('_[0-9]{1,5}$', '', dataset@rid)
gene.descs <- dataset@rdesc
sample.names <- dataset@cid
sample.descs <- dataset@cdesc
readGctx_success <- T
}
} else { #end if 'rid not unique'
########################################################
## display a more detailed error message if the import
## failed due to other reasons than redundant 'rid'
cat(paste("\n\nError importing GCT file using 'cmapR::parse.gctx()' for species: ", spc,
"\nPossible reasons:\n\n1) Please check whether you have the latest version of the 'cmapR' installed. Due to submission to Bioconductor the cmap team changed some naming conventions, e.g 'parse.gctx()' has been renamed to 'parse.gctx()'.\n2) The GCT file doesn't seem to be in the correct format! Please see take a look at https://clue.io/connectopedia/gct_format for details about GCT format.
\nError message returned by 'cmapR::parse.gctx()':\n\n", sep=""), file = error.file, append=T)
# next
}
}
}# wrap the script of importing gct file
if(!readGctx_success){
delta.r_vec = c(metaG.md, metaB.md, spc, NA)
names(delta.r_vec) <- c("MetaG.module","MetaB.module","Species","delta.spearman.r")
}else{
spc.metaG.mod.aft <- data.frame(t(m))
MetaG.B.aft <- merge(spc.metaG.mod.aft, MetaB.mod, by=0)
MetaG.B.aft <- MetaG.B.aft[complete.cases(MetaG.B.aft),] # remove NA because otherwise spearman r might be NA
r.aft = cor(MetaG.B.aft[,metaG.md], MetaG.B.aft[,metaB.md], method = "spearman")
delta.r = r.aft - r.bf
delta.r_vec = c(metaG.md, metaB.md, spc, delta.r)
names(delta.r_vec) <- c("MetaG.module","MetaB.module","Species","delta.spearman.r")
}
#delta.r_vec
moduelPair.res <- bind_rows(moduelPair.res, delta.r_vec)
}
final_res <- moduelPair.res %>% mutate(delta.spearman.r = as.numeric(delta.spearman.r)) %>%
group_by(MetaG.module, MetaB.module) %>% mutate(zscore = (delta.spearman.r - mean(delta.spearman.r, na.rm=T))/sd(delta.spearman.r, na.rm=T))
cat('Saving results as file: \n', file=log.file, append=T)
write.table(final_res, file = "5_LOSO_NEU.delta.spearman.r.txt", sep = "\t", quote = F, row.names = F)