[16eabd]: / 4-Multi-Omic Integration / scripts / 4.HostT.HostP.link.r

Download this file

161 lines (112 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# files required:
# 1) "3_HostT_affects_NEU_through_HostP.txt": resulting data frame generated from script "4.mediation_hostT.2.hostP.r"
# 2) "transcriptome.txt" transcriptomic abundance table on the feature level
# 3) "sputum_proteome.txt" proteomic abundance table on the feature level
# 4) "1_hostT.module_assign.txt" module assignment file of the transcriptomic featrues, generated from script "1.WGCNA_transcriptomics.r"
# 5) "protein_info.txt" protein names and corresponding gene names
# 6) "human_pathway.gmt" Human pathway information file (.gmt file)
# output:
# "4_HostT.module_HostP.protein.linked.txt"
output.dir = "Output"
log.file = "HostT.HostP.link.log"
## ######################################################################
##
## import data
##
## #####################################################################
library(data.table)
library(dplyr)
cat(paste("\n\n",as.character(Sys.time()), '\n'), file=log.file, append=T)
cat("Importing data : \n", file=log.file, append=T)
mediation.res <- fread("3_HosT_affects_NEU_through_HosP.txt")
# impport host t data
m1 <- data.frame(fread("transcriptome.txt"), row.names=1)
feature.abb_df1 <- cbind.data.frame(feature = rownames(m1),
abb = paste("feature",seq(1,nrow(m1),1),sep = ""),
stringsAsFactors = F)
rownames(m1) <- sapply(rownames(m1), function(x) feature.abb_df1$abb[which(feature.abb_df1$feature == x)])
m1 <- t(m1) %>% as.data.frame(stringsAsFactors=F)
colnames(m1) <- sapply(colnames(m1), function(x) feature.abb_df1$feature[which(feature.abb_df1$abb == x)])
HostT.dat <- m1
# import host p data
m2 = data.frame(fread("sputum_proteome.txt"), row.names = 1 )
feature.abb_df2 <- cbind.data.frame(feature = rownames(m2),
abb = paste("feature",seq(1,nrow(m2),1),sep = ""),
stringsAsFactors = F)
rownames(m2) <- sapply(rownames(m2), function(x) feature.abb_df2$abb[which(feature.abb_df2$feature == x)])
m2 <- t(m2) %>% as.data.frame(stringsAsFactors=F)
colnames(m2) <- sapply(colnames(m2), function(x) feature.abb_df2$feature[which(feature.abb_df2$abb == x)])
HostP.dat <- m2
# hostT module - feature assignment
HostT_module.feature <- fread("1_hostT.module_assign.txt", data.table = F, col.names =c("Feature","Module"))
# protein - gene information
temp <- fread("database/protein_info.txt", data.table = T) %>% dplyr::select(Target, GeneName) %>% unique()
Protein.Gene_list <- vector("list", length = nrow(temp))
names(Protein.Gene_list) <- temp$Target
for(i in c(1:nrow(temp))){
#i=1
prot = temp$Target[i]
genenames = strsplit(temp$GeneName[i], split = '[\\s\\/]', perl = T )[[1]]
Protein.Gene_list[[prot]] <- genenames
}
# pathway gene information
PTWY_list <- Read.GeneSets.db2("database/human_pathway.gmt")
Pthwy.genes_list <- PTWY_list$gs # the gene names
PTWY_list$gs.desc[1:3] # the pathway id
# merge data
HostT.HostP.dat <- merge(HostT.dat, HostP.dat, by=0)
## ###############################################
##
## perform linke analysis
##
## ###############################################
cat("Performing link analysis : \n", file=log.file, append=T)
# identify HostT-HostP module pairs
# HostT.HostP.modPairs <- strsplit((mediation.res %>% dplyr::filter(ACME.p <= ACME.p.co))$Treat_Mediator_Y,"_",fixed = T)
ACME.p.co = 0.10
HostT.HostP.modPairs <-(mediation.res %>% dplyr::filter(ACME.p <= ACME.p.co))$Treat_Mediator_Y
# identify links
links <- NULL
for(mdp in HostT.HostP.modPairs){
# mdp = HostT.HostP.modPairs[1]
parts = strsplit(mdp,"_", fixed = T)[[1]]
#cat(paste("\n\nAnalyzing module pairs: ", parts[1], "_",parts[2],"\n", sep = ""), file=log.file, append=T)
i_mdp <- which(HostT.HostP.modPairs == mdp)
if(i_mdp %% 100 == 0) cat(paste(" -------------------- progress: ", i_mdp, " out of ", length(HostT.HostP.modPairs)," module pairs -------------------------- \n", sep = ""), file=log.file, append=T)
# identify hostp associated gene
hostp.pro = sub("ME(.*)$","\\1",sub("HostP\\.(.*)$","\\1",parts[2]) )
hostp.gene = Protein.Gene_list[[hostp.pro]]
# identify hostt associated gene
# identify hostt associated gene by module assignment
hostt.md = sub("ME(.*)$","\\1",sub("HostT\\.(.*)$","\\1",parts[1]) )
hostt.ftr = HostT_module.feature$Feature[HostT_module.feature$Module == hostt.md]
# identify hostt associated gene through pathway enrichment analysis
pathwy.pvalue <- NULL
for(pthy in names(Pthwy.genes_list)[!grepl("^GENEGO", names(Pthwy.genes_list))]){
#pthy = names(Pthwy.genes_list)[!grepl("^GENEGO", names(Pthwy.genes_list))][1]
pthy.genes = Pthwy.genes_list[[pthy]]
overlaped = intersect(pthy.genes, hostt.ftr)
totalgene.no = ncol(HostT.dat)
pvalue <-dhyper(x=length(overlaped), m=length(pthy.genes), n= totalgene.no - length(pthy.genes), k = length(hostt.ftr))
p.vec_temp <- c(pthy, pvalue)
names(p.vec_temp) <- c("Pathway","dhyper.pvalue")
pathwy.pvalue <- bind_rows(pathwy.pvalue, p.vec_temp)
}
pathwy.pvalue <- pathwy.pvalue %>%
mutate(fdr = p.adjust(dhyper.pvalue, method = "fdr")) %>%
dplyr::arrange(fdr) %>% filter(fdr <= 0.25)
if(nrow(pathwy.pvalue) == 0) {
hostt.ftr.integrated <- hostt.ftr
} else {
hostt.ftr.pthwy = Pthwy.genes_list[[pathwy.pvalue$Pathway[1]]]
hostt.ftr.integrated <- unique(c(hostt.ftr,hostt.ftr.pthwy ))
}
if(length( intersect(hostt.ftr.integrated, hostp.gene)) > 0) {
link = c(paste(parts[1], parts[2], sep = "_" ), paste(intersect(hostt.ftr.integrated, hostp.gene), collapse = ";") )
names(link) <- c("HostT.module_HostP.protein_pair", "Genes.association")
links <- bind_rows(links,link)
remove(link)
}
} # loop through module pairs
if(!dir.exists(output.dir)) dir.create(output.dir)
write.table(links, file = paste(output.dir,"/HostT.module_HostP.protein.NEU.linked.txt",sep = ""), sep = "\t", quote = F, row.names = F)