Diff of /6-Figure scripts/Fig S1.R [000000] .. [16eabd]

Switch to unified view

a b/6-Figure scripts/Fig S1.R
1
library(readxl)
2
library(dplyr)
3
4
5
6
#Figure S1a --------------------------------------
7
# Figure S1a. genes ####
8
dat.genes <- read_excel("Fig S1 Source Data.xlsx", sheet = "Fig S1a rarefaction genes")
9
dat.KO <- read_excel("Fig S1 Source Data.xlsx", sheet = "Fig S1a rarefaction KOs")
10
11
12
data1<-dat.genes[(dat.genes$Group=="COPD"),]
13
data2<-dat.genes[(dat.genes$Group=="Health"),]
14
dat_combined <- merge(data1,data2, by = "Samples",all = T)
15
16
17
library(ggplot2)
18
p1<-ggplot(dat_combined,aes(x=factor(Samples),y=Genes.x/1000000))+
19
  geom_boxplot(colour="#f0999f",outlier.colour=NULL,outlier.shape=19,outlier.size=1)+
20
  #scale_y_continuous(limits = c(0,2))  +
21
  theme_bw() + theme(panel.grid.minor =element_blank(), panel.grid.major = element_blank()) 
22
p1
23
24
library(ggpubr)
25
library(cowplot)
26
p2<-ggplot(dat_combined,aes(x=factor(Samples),y=Genes.y/1000000)) + 
27
  geom_boxplot(colour="#46bbc0",outlier.colour=NULL,outlier.shape=19,outlier.size=1)+
28
  scale_y_continuous(limits = c(0,1.25), position = "right",
29
                     breaks = seq(0,1.25, by=0.25))  +
30
  theme_half_open(11, rel_small = 1) + 
31
  rremove("x.axis")+
32
  rremove("xlab") +
33
  rremove("x.text") +
34
  rremove("x.ticks") +
35
  rremove("legend") 
36
37
p2
38
39
aligned_plots <- align_plots(p1, p2, align="hv", axis="tblr")
40
FigS1a.genes <- ggdraw(aligned_plots[[1]]) + draw_plot(aligned_plots[[2]])
41
FigS1a.genes
42
43
44
# Figure S1a. KO ####
45
46
data1<-dat.KO[(dat.KO$Group=="COPD"),]
47
data2<-dat.KO[(dat.KO$Group=="Health"),]
48
dat_combined <- merge(data1,data2, by = "Samples",all = T)
49
50
p1<-ggplot(dat_combined,aes(x=factor(Samples),y=Genes.x/1000))+
51
  geom_boxplot(colour="#f0999f",outlier.colour=NULL,outlier.shape=19,outlier.size=1)+
52
  scale_y_continuous(limits = c(2.5,7))  +
53
  theme_bw() + theme(panel.grid.minor =element_blank(), panel.grid.major = element_blank()) 
54
p1
55
56
57
p2<-ggplot(dat_combined,aes(x=factor(Samples),y=Genes.y/1000)) + 
58
  geom_boxplot(colour="#46bbc0",outlier.colour=NULL,outlier.shape=19,outlier.size=1)+
59
  scale_y_continuous(limits =  c(2.5,7), position = "right",
60
                     breaks = seq(3,7, by=1))  +
61
  theme_half_open(11, rel_small = 1) + 
62
  rremove("x.axis")+
63
  rremove("xlab") +
64
  rremove("x.text") +
65
  rremove("x.ticks") +
66
  rremove("legend") 
67
68
p2
69
70
aligned_plots <- align_plots(p1, p2, align="hv", axis="tblr")
71
FigS1a.KO <- ggdraw(aligned_plots[[1]]) + draw_plot(aligned_plots[[2]])
72
FigS1a.KO
73
74
75
76
# Figure S1b. -----------------------------------------------------
77
rm(list = ls())
78
# Fig S1b.stats #####
79
data<-read_excel("Fig S1 Source Data.xlsx" ,sheet =  "Fig S1b bin stats")
80
plotDat<-melt(data,id.vals="NAME")
81
group<-factor(plotDat$Group,levels=c("High","Medium","Low"))
82
FigS1b.stats <- 
83
  ggplot(plotDat,aes(x=group,y=value))+
84
  geom_boxplot(outlier.shape=NA,aes(fill=group))+
85
  geom_jitter(alpha=0.1,shape=20,size=3,position=position_jitter(0.2))+
86
  facet_wrap(~variable,scale="free")+
87
  scale_fill_manual(values=c("#3081bc","#9fc8e2","#dfebf5")) +
88
  theme_bw()+theme(axis.line = element_line(colour = "black"),
89
                   panel.grid.major = element_blank(),
90
                   panel.grid.minor = element_blank(),
91
                   panel.background = element_blank())
92
FigS1b.stats
93
94
# Fig S1b.taxa #####
95
data <- read_excel("Fig S1 Source Data.xlsx", sheet = "Fig S1b bin taxa")
96
plotDat <- data %>% reshape2::melt() %>% 
97
  group_by(variable, Genus) %>% 
98
  summarise(sumed = sum(value), Phylum=unique(Phylum)) %>%
99
  mutate(freq=sumed/sum(sumed))
100
101
plotDat$Phylum <- factor(plotDat$Phylum, 
102
                         levels = c("Bacteroidetes","Proteobacteria","Actinobacteria",
103
                                    "Firmicutes","Spirochaetes","TM7"))
104
genus.level <- c("Prevotella","Porphyromonadaceae","Bacteroidales",
105
                 "Neisseria","Haemophilus","Moraxella","Campylobacter","Ralstonia","Pseudomonas","Lautropia",
106
                 "Rothia","Schaalia","Actinomyces",
107
                 "Streptococcus","Veillonella","Lachnospiraceae","Mogibacterium",
108
                 "Megasphaera","Selenomonas","Lactobacillus",
109
                 "Treponema","Saccharibacteria","Others","Unclassified")
110
plotDat$Genus[!plotDat$Genus  %in% genus.level] <- "Others"
111
112
plotDat$Genus <- factor(plotDat$Genus,levels = rev(genus.level))
113
114
mypalette <- c("#E25554","#E88D8D","#F2C3C3",
115
               "#EEA020","#F0AD4D","#F4BF76","#F7CF9E","#F6D9B9","#FBE9D8","#FCF2EA",
116
               "#49A9CE","#80CCE0","#BFE4EE",
117
               "#33A863","#4EB676","#77C392","#96CFA9",
118
               "#B4DCC1","#C5E3D0","#E2F1E6",
119
               "#D0BB8A","#968CBC","#B7B6B6","#E5E3E2")
120
121
FigS1b.taxa <- ggplot(plotDat) +
122
  geom_col(aes(x=variable, y=freq, fill=Genus))+
123
  scale_fill_manual(values = rev(mypalette))+
124
  theme_classic()
125
FigS1b.taxa