|
a |
|
b/6-Figure scripts/Fig 2.r |
|
|
1 |
list.files() |
|
|
2 |
|
|
|
3 |
library(readxl) |
|
|
4 |
excel_sheets("Fig 2 Source Data.xlsx") |
|
|
5 |
|
|
|
6 |
library(dplyr) |
|
|
7 |
|
|
|
8 |
# Figure 2a ------------------------------------------ |
|
|
9 |
|
|
|
10 |
# Figure 2a. metabolome ####### |
|
|
11 |
rm(list = ls()) |
|
|
12 |
dat.metab <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2a metabolome PCA") |
|
|
13 |
|
|
|
14 |
library(ggplot2) |
|
|
15 |
pca <- dat.metab |
|
|
16 |
Fig2a.metab.pca <- ggplot(pca,aes(PC1,PC2))+ |
|
|
17 |
geom_point(size=2,aes(col=Group,shape=Cohort))+ |
|
|
18 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
19 |
scale_shape_manual(values=c(16,15)) + |
|
|
20 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
21 |
panel.grid.major = element_blank(), |
|
|
22 |
panel.grid.minor = element_blank(), |
|
|
23 |
panel.background = element_blank()) |
|
|
24 |
Fig2a.metab.pca |
|
|
25 |
|
|
|
26 |
pca$GROUP = paste(pca$Group,"|", pca$Cohort,sep = "") |
|
|
27 |
|
|
|
28 |
Fig2a.metab.pc1.density <- |
|
|
29 |
ggplot(pca) + |
|
|
30 |
geom_density(aes(x=PC1, group=GROUP, fill=Group, linetype=Cohort), |
|
|
31 |
color="black", alpha=0.6, position = 'identity') + |
|
|
32 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
33 |
theme_bw() + |
|
|
34 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
35 |
labs(fill="") |
|
|
36 |
Fig2a.metab.pc1.density |
|
|
37 |
|
|
|
38 |
Fig2a.metab.pc2.density <- |
|
|
39 |
ggplot(pca) + |
|
|
40 |
geom_density(aes(x=PC2, group=GROUP, fill=Group, linetype=Cohort), |
|
|
41 |
color="black", alpha=0.6, position = 'identity') + |
|
|
42 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
43 |
theme_bw() + |
|
|
44 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
45 |
labs(fill="") + |
|
|
46 |
coord_flip() |
|
|
47 |
Fig2a.metab.pc2.density |
|
|
48 |
|
|
|
49 |
|
|
|
50 |
|
|
|
51 |
# Figure 2a. metabolome ####### |
|
|
52 |
excel_sheets("Fig 2 Source Data.xlsx") |
|
|
53 |
rm(list = ls()) |
|
|
54 |
dat.trans <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2a transcriptome PCA") |
|
|
55 |
|
|
|
56 |
#library(ggplot2) |
|
|
57 |
pca <- dat.trans |
|
|
58 |
Fig2a.trans.pca <- ggplot(pca,aes(PC1,PC2))+ |
|
|
59 |
geom_point(size=2,aes(col=Group,shape=Cohort))+ |
|
|
60 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
61 |
scale_shape_manual(values=c(16,15)) + |
|
|
62 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
63 |
panel.grid.major = element_blank(), |
|
|
64 |
panel.grid.minor = element_blank(), |
|
|
65 |
panel.background = element_blank()) |
|
|
66 |
Fig2a.trans.pca |
|
|
67 |
|
|
|
68 |
pca$GROUP = paste(pca$Group,"|", pca$Cohort,sep = "") |
|
|
69 |
|
|
|
70 |
Fig2a.trans.pc1.density <- |
|
|
71 |
ggplot(pca) + |
|
|
72 |
geom_density(aes(x=PC1, group=GROUP, fill=Group, linetype=Cohort), |
|
|
73 |
color="black", alpha=0.6, position = 'identity') + |
|
|
74 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
75 |
theme_bw() + |
|
|
76 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
77 |
labs(fill="") |
|
|
78 |
Fig2a.trans.pc1.density |
|
|
79 |
|
|
|
80 |
Fig2a.trans.pc2.density <- |
|
|
81 |
ggplot(pca) + |
|
|
82 |
geom_density(aes(x=PC2, group=GROUP, fill=Group, linetype=Cohort), |
|
|
83 |
color="black", alpha=0.6, position = 'identity') + |
|
|
84 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
85 |
theme_bw() + |
|
|
86 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
87 |
labs(fill="") + |
|
|
88 |
coord_flip() |
|
|
89 |
Fig2a.trans.pc2.density |
|
|
90 |
|
|
|
91 |
|
|
|
92 |
# Figure 2a. sputum proteome ####### |
|
|
93 |
excel_sheets("Fig 2 Source Data.xlsx") |
|
|
94 |
rm(list = ls()) |
|
|
95 |
dat.sputum <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2a sputum proteome PCA") |
|
|
96 |
|
|
|
97 |
#library(ggplot2) |
|
|
98 |
pca <- dat.sputum |
|
|
99 |
Fig2a.sputum.pca <- ggplot(pca,aes(PC1,PC2))+ |
|
|
100 |
geom_point(size=2,aes(col=Group))+ |
|
|
101 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
102 |
scale_shape_manual(values=c(16,15)) + |
|
|
103 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
104 |
panel.grid.major = element_blank(), |
|
|
105 |
panel.grid.minor = element_blank(), |
|
|
106 |
panel.background = element_blank()) |
|
|
107 |
Fig2a.sputum.pca |
|
|
108 |
|
|
|
109 |
Fig2a.sputum.pc1.density <- |
|
|
110 |
ggplot(pca) + |
|
|
111 |
geom_density(aes(x=PC1, group=Group, fill=Group), |
|
|
112 |
color="black", alpha=0.6, position = 'identity') + |
|
|
113 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
114 |
theme_bw() + |
|
|
115 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
116 |
labs(fill="") |
|
|
117 |
Fig2a.sputum.pc1.density |
|
|
118 |
|
|
|
119 |
Fig2a.sputum.pc2.density <- |
|
|
120 |
ggplot(pca) + |
|
|
121 |
geom_density(aes(x=PC2, group=Group, fill=Group), |
|
|
122 |
color="black", alpha=0.6, position = 'identity') + |
|
|
123 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
124 |
theme_bw() + |
|
|
125 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
126 |
labs(fill="") + |
|
|
127 |
coord_flip() |
|
|
128 |
Fig2a.sputum.pc2.density |
|
|
129 |
|
|
|
130 |
|
|
|
131 |
# Figure 2a. serum proteome ####### |
|
|
132 |
excel_sheets("Fig 2 Source Data.xlsx") |
|
|
133 |
rm(list = ls()) |
|
|
134 |
dat.serum <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2a serum proteome PCA") |
|
|
135 |
|
|
|
136 |
#library(ggplot2) |
|
|
137 |
pca <- dat.serum |
|
|
138 |
Fig2a.serum.pca <- ggplot(pca,aes(PC1,PC2))+ |
|
|
139 |
geom_point(size=2,aes(col=Group))+ |
|
|
140 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
141 |
scale_shape_manual(values=c(16,15)) + |
|
|
142 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
143 |
panel.grid.major = element_blank(), |
|
|
144 |
panel.grid.minor = element_blank(), |
|
|
145 |
panel.background = element_blank()) |
|
|
146 |
Fig2a.serum.pca |
|
|
147 |
|
|
|
148 |
Fig2a.serum.pc1.density <- |
|
|
149 |
ggplot(pca) + |
|
|
150 |
geom_density(aes(x=PC1, group=Group, fill=Group), |
|
|
151 |
color="black", alpha=0.6, position = 'identity') + |
|
|
152 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
153 |
theme_bw() + |
|
|
154 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
155 |
labs(fill="") |
|
|
156 |
Fig2a.serum.pc1.density |
|
|
157 |
|
|
|
158 |
Fig2a.serum.pc2.density <- |
|
|
159 |
ggplot(pca) + |
|
|
160 |
geom_density(aes(x=PC2, group=Group, fill=Group), |
|
|
161 |
color="black", alpha=0.6, position = 'identity') + |
|
|
162 |
scale_fill_manual(values=c("#f0999f","#46bbc0")) + |
|
|
163 |
theme_bw() + |
|
|
164 |
scale_linetype_manual(values = c("solid","dashed"))+ |
|
|
165 |
labs(fill="") + |
|
|
166 |
coord_flip() |
|
|
167 |
Fig2a.serum.pc2.density |
|
|
168 |
|
|
|
169 |
|
|
|
170 |
# Figure 2b ------------------------------------------ |
|
|
171 |
excel_sheets("Fig 2 Source Data.xlsx") |
|
|
172 |
rm(list = ls()) |
|
|
173 |
metab.modules <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2b metab modules") |
|
|
174 |
metab.features <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2b metab features") |
|
|
175 |
|
|
|
176 |
# Figure 2b.density of modules #### |
|
|
177 |
data <- metab.modules |
|
|
178 |
library(reshape2) |
|
|
179 |
data2<-melt(data,id.vals=c("NAME","CLASS","GROUP") ) |
|
|
180 |
md.levels <- c("MEbrown4","MEmediumpurple1","MEskyblue3","MElavenderblush3","MEslateblue", |
|
|
181 |
"MEsalmon2","MEbisque4","MEplum","MEmidnightblue","MEindianred4") |
|
|
182 |
|
|
|
183 |
data2$variable=factor(data2$variable,levels=md.levels) |
|
|
184 |
data2$GROUP4 <- paste(data2$GROUP,data2$CLASS, sep = "|") |
|
|
185 |
Fig2b.density <- ggplot(data2,aes(data2$value))+ |
|
|
186 |
geom_density(aes(group=data2$GROUP4,fill=data2$CLASS,alpha=0.4,linetype=data2$GROUP))+ |
|
|
187 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
188 |
facet_wrap(~data2$variable,scale="free",ncol=1)+ |
|
|
189 |
scale_linetype_manual(values=c("solid","dashed"))+ |
|
|
190 |
scale_x_continuous(limits=c(-0.2,0.2)) + |
|
|
191 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
192 |
panel.grid.major = element_blank(), |
|
|
193 |
panel.grid.minor = element_blank(), |
|
|
194 |
panel.background = element_blank()) |
|
|
195 |
Fig2b.density |
|
|
196 |
ggsave(Fig2b.density, filename = "Fig2b.density.pdf",device = "pdf", width = 4, height = 10) |
|
|
197 |
|
|
|
198 |
# Figure 2b.heatmap #### |
|
|
199 |
data <- metab.features |
|
|
200 |
data.Sz <- metab.features %>% select(starts_with("Z")) |
|
|
201 |
data.Gz <- metab.features %>% select(!starts_with("Z")) %>% select(-Metabolite, -Group) |
|
|
202 |
|
|
|
203 |
colors<-c(seq(-4,0,length=51),seq(0.1,4,length=50)) |
|
|
204 |
my_palette<- colorRampPalette(c("#EE9494","#F6E572","#94EE9D","#94E1EE","#94B3EE","white","white","white","white","white","white","white"))(n=100) |
|
|
205 |
library(gplots) |
|
|
206 |
pdf( "Fig2b.metab.hm.Sz.pdf") #save figure2b.metab.heamap.Shenzhen in pdf |
|
|
207 |
heatmap.2(as.matrix(data.Sz), |
|
|
208 |
breaks=colors, scale="row", trace="none", |
|
|
209 |
Rowv=FALSE, dendrogram='column',hclustfun = function(x) hclust(x, method="ward.D2"), |
|
|
210 |
col=rev(my_palette)) |
|
|
211 |
dev.off() |
|
|
212 |
|
|
|
213 |
pdf( "Fig2b.metab.hm.Gz.pdf") #save figure2b.metab.heamap.Guangzhou in pdf |
|
|
214 |
heatmap.2(as.matrix(data.Gz), |
|
|
215 |
breaks=colors, scale="row", trace="none", |
|
|
216 |
Rowv=FALSE, dendrogram='column',hclustfun = function(x) hclust(x, method="ward.D2"), |
|
|
217 |
col=rev(my_palette)) |
|
|
218 |
dev.off() |
|
|
219 |
|
|
|
220 |
|
|
|
221 |
## Figure 2c ------------------------------------------ |
|
|
222 |
excel_sheets("Fig 2 Source Data.xlsx") |
|
|
223 |
rm(list = ls()) |
|
|
224 |
trans.modules <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2c trans modules") |
|
|
225 |
trans.features <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2c trans features") |
|
|
226 |
|
|
|
227 |
# Figure 2c.density of modules #### |
|
|
228 |
data <- trans.modules |
|
|
229 |
#library(reshape2) |
|
|
230 |
data2<-melt(data,id.vals=c("NAME","CLASS","GROUP") ) |
|
|
231 |
md.levels <- c("MEcyan","MEdarkmagenta.1", |
|
|
232 |
"MEorangered4","MEskyblue2", |
|
|
233 |
"MEblueviolet","MEthistle4", |
|
|
234 |
"MElightyellow","MEchocolate4", |
|
|
235 |
"MEbisque4.1","MEsnow4") |
|
|
236 |
|
|
|
237 |
data2$variable=factor(data2$variable,levels=md.levels) |
|
|
238 |
data2$GROUP4 <- paste(data2$GROUP,data2$CLASS, sep = "|") |
|
|
239 |
Fig2c.density <- ggplot(data2,aes(value))+ |
|
|
240 |
geom_density(aes(group=GROUP4,fill=CLASS,alpha=0.4,linetype=GROUP))+ |
|
|
241 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
242 |
facet_wrap(~variable,scale="free",ncol=1)+ |
|
|
243 |
scale_linetype_manual(values=c("solid","dashed"))+ |
|
|
244 |
scale_x_continuous(limits=c(-0.2,0.2)) + |
|
|
245 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
246 |
panel.grid.major = element_blank(), |
|
|
247 |
panel.grid.minor = element_blank(), |
|
|
248 |
panel.background = element_blank()) |
|
|
249 |
Fig2c.density |
|
|
250 |
ggsave(Fig2c.density, filename = "Fig2c.density.pdf",device = "pdf", width = 4, height = 10) |
|
|
251 |
|
|
|
252 |
|
|
|
253 |
# Figure 2c.heatmap #### |
|
|
254 |
data <- trans.features |
|
|
255 |
data.Sz <- trans.features %>% select(starts_with("Z")) |
|
|
256 |
data.Gz <- trans.features %>% select(!starts_with("Z")) %>% select(-Gene, -Module) |
|
|
257 |
|
|
|
258 |
colors <- c(seq(-4, 0, length=51), seq(0.1, 4, length=50)) |
|
|
259 |
my_palette<- colorRampPalette(c("#EE9494","#F6E572","#94EE9D","#94E1EE","#94B3EE","white","white","white","white","white","white","white"))(n=100) |
|
|
260 |
#library(gplots) |
|
|
261 |
#pdf( "Fig2c.trans.hm.Sz.pdf") #save figure2c.trans.heamap.Shenzhen in pdf |
|
|
262 |
heatmap.2(as.matrix(data.Sz), |
|
|
263 |
breaks=colors, scale="row", trace="none", |
|
|
264 |
Rowv=FALSE, dendrogram='column',hclustfun = function(x) hclust(x, method="ward.D2"), |
|
|
265 |
col=rev(my_palette)) |
|
|
266 |
#dev.off() |
|
|
267 |
|
|
|
268 |
pdf( "Fig2c.trans.hm.Gz.pdf") #save figure2c.trans.heamap.Guangzhou in pdf |
|
|
269 |
heatmap.2(as.matrix(data.Gz), |
|
|
270 |
breaks=colors, scale="row", trace="none", hclustfun = function(x) hclust(x, method="ward.D2"), |
|
|
271 |
Rowv=FALSE, dendrogram='column', |
|
|
272 |
col=rev(my_palette)) |
|
|
273 |
dev.off() |
|
|
274 |
|
|
|
275 |
|
|
|
276 |
## Figure 2d ------------------------------------------ |
|
|
277 |
excel_sheets("Fig 2 data.xlsx") |
|
|
278 |
rm(list = ls()) |
|
|
279 |
prot.features <- read_excel("Fig 2 Source Data.xlsx", sheet = "Fig 2d proteome features") |
|
|
280 |
sputum.p <- prot.features %>% select(SampleID, Group, starts_with("Sputum")) |
|
|
281 |
serum.p <- prot.features %>% select(SampleID, Group, starts_with("serum")) |
|
|
282 |
|
|
|
283 |
# Figure2d. sputum proteome #### |
|
|
284 |
data <- sputum.p |
|
|
285 |
|
|
|
286 |
data.l <- reshape2::melt(data, id.vars=c("SampleID", "Group")) |
|
|
287 |
sapply(data.l,class) |
|
|
288 |
data.l_positive <- data.l %>% filter(value > 0) |
|
|
289 |
|
|
|
290 |
H_median_df <- data.l_positive %>% filter(Group == "H") %>% |
|
|
291 |
group_by(variable) %>% summarise(H_median =median(value)) %>% |
|
|
292 |
as.data.frame(stringsAsFactors=F) |
|
|
293 |
|
|
|
294 |
plotDat <- |
|
|
295 |
merge(data.l_positive,H_median_df,by="variable") %>% |
|
|
296 |
mutate(normalized_value = value/H_median) %>% |
|
|
297 |
mutate(normalized.log = log10(normalized_value)) |
|
|
298 |
|
|
|
299 |
|
|
|
300 |
Fig2d.sputum <- ggplot(plotDat,aes(normalized.log))+ |
|
|
301 |
geom_density(aes(group=Group,fill=Group,alpha=0.4))+ |
|
|
302 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
303 |
facet_wrap(~variable,scale="free",ncol = 1) + |
|
|
304 |
# scale_linetype_manual(values=c("solid","dashed"))+ |
|
|
305 |
#scale_x_continuous(limits=c(-0.2,0.2))+ |
|
|
306 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
307 |
panel.grid.major = element_blank(), |
|
|
308 |
panel.grid.minor = element_blank(), |
|
|
309 |
panel.background = element_blank()) |
|
|
310 |
|
|
|
311 |
Fig2d.sputum |
|
|
312 |
ggsave(Fig2d.sputum, filename = 'Fig2d.sputum.pdf', device = "pdf",width = 4,height = 10) |
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
# Figure2d. serum proteome #### |
|
|
317 |
data <- serum.p |
|
|
318 |
|
|
|
319 |
data.l <- reshape2::melt(data, id.vars=c("SampleID", "Group")) |
|
|
320 |
sapply(data.l,class) |
|
|
321 |
data.l_positive <- data.l %>% filter(value > 0) |
|
|
322 |
|
|
|
323 |
H_median_df <- data.l_positive %>% filter(Group == "H") %>% |
|
|
324 |
group_by(variable) %>% summarise(H_median =median(value)) %>% |
|
|
325 |
as.data.frame(stringsAsFactors=F) |
|
|
326 |
|
|
|
327 |
plotDat <- |
|
|
328 |
merge(data.l_positive,H_median_df,by="variable") %>% |
|
|
329 |
mutate(normalized_value = value/H_median) %>% |
|
|
330 |
mutate(normalized.log = log10(normalized_value)) |
|
|
331 |
|
|
|
332 |
|
|
|
333 |
Fig2d.serum <- ggplot(plotDat,aes(normalized.log))+ |
|
|
334 |
geom_density(aes(group=Group,fill=Group,alpha=0.4))+ |
|
|
335 |
scale_color_manual(values=c("#f0999f","#46bbc0"))+ |
|
|
336 |
facet_wrap(~variable,scale="free",ncol = 1) + |
|
|
337 |
# scale_linetype_manual(values=c("solid","dashed"))+ |
|
|
338 |
scale_x_continuous(limits=c(-0.2,0.2))+ |
|
|
339 |
theme_bw()+theme(axis.line = element_line(colour = "black"), |
|
|
340 |
panel.grid.major = element_blank(), |
|
|
341 |
panel.grid.minor = element_blank(), |
|
|
342 |
panel.background = element_blank()) |
|
|
343 |
|
|
|
344 |
Fig2d.serum |
|
|
345 |
ggsave(Fig2d.serum, filename = 'Fig2d.serum.pdf', device = "pdf",width = 4,height = 4) |