|
a |
|
b/src/llama-main/llama/model.py |
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates. |
|
|
2 |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. |
|
|
3 |
|
|
|
4 |
import math |
|
|
5 |
from dataclasses import dataclass |
|
|
6 |
from typing import Optional, Tuple |
|
|
7 |
|
|
|
8 |
import fairscale.nn.model_parallel.initialize as fs_init |
|
|
9 |
import torch |
|
|
10 |
import torch.nn.functional as F |
|
|
11 |
from fairscale.nn.model_parallel.layers import ( |
|
|
12 |
ColumnParallelLinear, |
|
|
13 |
ParallelEmbedding, |
|
|
14 |
RowParallelLinear, |
|
|
15 |
) |
|
|
16 |
from torch import nn |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
@dataclass |
|
|
20 |
class ModelArgs: |
|
|
21 |
dim: int = 4096 |
|
|
22 |
n_layers: int = 32 |
|
|
23 |
n_heads: int = 32 |
|
|
24 |
n_kv_heads: Optional[int] = None |
|
|
25 |
vocab_size: int = -1 # defined later by tokenizer |
|
|
26 |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 |
|
|
27 |
ffn_dim_multiplier: Optional[float] = None |
|
|
28 |
norm_eps: float = 1e-5 |
|
|
29 |
|
|
|
30 |
max_batch_size: int = 32 |
|
|
31 |
max_seq_len: int = 2048 |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
class RMSNorm(torch.nn.Module): |
|
|
35 |
def __init__(self, dim: int, eps: float = 1e-6): |
|
|
36 |
""" |
|
|
37 |
Initialize the RMSNorm normalization layer. |
|
|
38 |
|
|
|
39 |
Args: |
|
|
40 |
dim (int): The dimension of the input tensor. |
|
|
41 |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. |
|
|
42 |
|
|
|
43 |
Attributes: |
|
|
44 |
eps (float): A small value added to the denominator for numerical stability. |
|
|
45 |
weight (nn.Parameter): Learnable scaling parameter. |
|
|
46 |
|
|
|
47 |
""" |
|
|
48 |
super().__init__() |
|
|
49 |
self.eps = eps |
|
|
50 |
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
51 |
|
|
|
52 |
def _norm(self, x): |
|
|
53 |
""" |
|
|
54 |
Apply the RMSNorm normalization to the input tensor. |
|
|
55 |
|
|
|
56 |
Args: |
|
|
57 |
x (torch.Tensor): The input tensor. |
|
|
58 |
|
|
|
59 |
Returns: |
|
|
60 |
torch.Tensor: The normalized tensor. |
|
|
61 |
|
|
|
62 |
""" |
|
|
63 |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
64 |
|
|
|
65 |
def forward(self, x): |
|
|
66 |
""" |
|
|
67 |
Forward pass through the RMSNorm layer. |
|
|
68 |
|
|
|
69 |
Args: |
|
|
70 |
x (torch.Tensor): The input tensor. |
|
|
71 |
|
|
|
72 |
Returns: |
|
|
73 |
torch.Tensor: The output tensor after applying RMSNorm. |
|
|
74 |
|
|
|
75 |
""" |
|
|
76 |
output = self._norm(x.float()).type_as(x) |
|
|
77 |
return output * self.weight |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
|
81 |
""" |
|
|
82 |
Precompute the frequency tensor for complex exponentials (cis) with given dimensions. |
|
|
83 |
|
|
|
84 |
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' |
|
|
85 |
and the end index 'end'. The 'theta' parameter scales the frequencies. |
|
|
86 |
The returned tensor contains complex values in complex64 data type. |
|
|
87 |
|
|
|
88 |
Args: |
|
|
89 |
dim (int): Dimension of the frequency tensor. |
|
|
90 |
end (int): End index for precomputing frequencies. |
|
|
91 |
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. |
|
|
92 |
|
|
|
93 |
Returns: |
|
|
94 |
torch.Tensor: Precomputed frequency tensor with complex exponentials. |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
|
98 |
|
|
|
99 |
""" |
|
|
100 |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
|
101 |
t = torch.arange(end, device=freqs.device) # type: ignore |
|
|
102 |
freqs = torch.outer(t, freqs).float() # type: ignore |
|
|
103 |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 |
|
|
104 |
return freqs_cis |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
|
108 |
""" |
|
|
109 |
Reshape frequency tensor for broadcasting it with another tensor. |
|
|
110 |
|
|
|
111 |
This function reshapes the frequency tensor to have the same shape as the target tensor 'x' |
|
|
112 |
for the purpose of broadcasting the frequency tensor during element-wise operations. |
|
|
113 |
|
|
|
114 |
Args: |
|
|
115 |
freqs_cis (torch.Tensor): Frequency tensor to be reshaped. |
|
|
116 |
x (torch.Tensor): Target tensor for broadcasting compatibility. |
|
|
117 |
|
|
|
118 |
Returns: |
|
|
119 |
torch.Tensor: Reshaped frequency tensor. |
|
|
120 |
|
|
|
121 |
Raises: |
|
|
122 |
AssertionError: If the frequency tensor doesn't match the expected shape. |
|
|
123 |
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions. |
|
|
124 |
""" |
|
|
125 |
ndim = x.ndim |
|
|
126 |
assert 0 <= 1 < ndim |
|
|
127 |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
|
128 |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
|
129 |
return freqs_cis.view(*shape) |
|
|
130 |
|
|
|
131 |
|
|
|
132 |
def apply_rotary_emb( |
|
|
133 |
xq: torch.Tensor, |
|
|
134 |
xk: torch.Tensor, |
|
|
135 |
freqs_cis: torch.Tensor, |
|
|
136 |
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
137 |
""" |
|
|
138 |
Apply rotary embeddings to input tensors using the given frequency tensor. |
|
|
139 |
|
|
|
140 |
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided |
|
|
141 |
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor |
|
|
142 |
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are |
|
|
143 |
returned as real tensors. |
|
|
144 |
|
|
|
145 |
Args: |
|
|
146 |
xq (torch.Tensor): Query tensor to apply rotary embeddings. |
|
|
147 |
xk (torch.Tensor): Key tensor to apply rotary embeddings. |
|
|
148 |
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials. |
|
|
149 |
|
|
|
150 |
Returns: |
|
|
151 |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. |
|
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
|
155 |
""" |
|
|
156 |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
|
157 |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
|
158 |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
|
159 |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
|
160 |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
|
161 |
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
165 |
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
|
166 |
bs, slen, n_kv_heads, head_dim = x.shape |
|
|
167 |
if n_rep == 1: |
|
|
168 |
return x |
|
|
169 |
return ( |
|
|
170 |
x[:, :, :, None, :] |
|
|
171 |
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
|
172 |
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
|
173 |
) |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
class Attention(nn.Module): |
|
|
177 |
"""Multi-head attention module.""" |
|
|
178 |
def __init__(self, args: ModelArgs): |
|
|
179 |
""" |
|
|
180 |
Initialize the Attention module. |
|
|
181 |
|
|
|
182 |
Args: |
|
|
183 |
args (ModelArgs): Model configuration parameters. |
|
|
184 |
|
|
|
185 |
Attributes: |
|
|
186 |
n_kv_heads (int): Number of key and value heads. |
|
|
187 |
n_local_heads (int): Number of local query heads. |
|
|
188 |
n_local_kv_heads (int): Number of local key and value heads. |
|
|
189 |
n_rep (int): Number of repetitions for local heads. |
|
|
190 |
head_dim (int): Dimension size of each attention head. |
|
|
191 |
wq (ColumnParallelLinear): Linear transformation for queries. |
|
|
192 |
wk (ColumnParallelLinear): Linear transformation for keys. |
|
|
193 |
wv (ColumnParallelLinear): Linear transformation for values. |
|
|
194 |
wo (RowParallelLinear): Linear transformation for output. |
|
|
195 |
cache_k (torch.Tensor): Cached keys for attention. |
|
|
196 |
cache_v (torch.Tensor): Cached values for attention. |
|
|
197 |
|
|
|
198 |
""" |
|
|
199 |
super().__init__() |
|
|
200 |
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
|
201 |
model_parallel_size = fs_init.get_model_parallel_world_size() |
|
|
202 |
self.n_local_heads = args.n_heads // model_parallel_size |
|
|
203 |
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size |
|
|
204 |
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
|
205 |
self.head_dim = args.dim // args.n_heads |
|
|
206 |
|
|
|
207 |
self.wq = ColumnParallelLinear( |
|
|
208 |
args.dim, |
|
|
209 |
args.n_heads * self.head_dim, |
|
|
210 |
bias=False, |
|
|
211 |
gather_output=False, |
|
|
212 |
init_method=lambda x: x, |
|
|
213 |
) |
|
|
214 |
self.wk = ColumnParallelLinear( |
|
|
215 |
args.dim, |
|
|
216 |
self.n_kv_heads * self.head_dim, |
|
|
217 |
bias=False, |
|
|
218 |
gather_output=False, |
|
|
219 |
init_method=lambda x: x, |
|
|
220 |
) |
|
|
221 |
self.wv = ColumnParallelLinear( |
|
|
222 |
args.dim, |
|
|
223 |
self.n_kv_heads * self.head_dim, |
|
|
224 |
bias=False, |
|
|
225 |
gather_output=False, |
|
|
226 |
init_method=lambda x: x, |
|
|
227 |
) |
|
|
228 |
self.wo = RowParallelLinear( |
|
|
229 |
args.n_heads * self.head_dim, |
|
|
230 |
args.dim, |
|
|
231 |
bias=False, |
|
|
232 |
input_is_parallel=True, |
|
|
233 |
init_method=lambda x: x, |
|
|
234 |
) |
|
|
235 |
|
|
|
236 |
self.cache_k = torch.zeros( |
|
|
237 |
( |
|
|
238 |
args.max_batch_size, |
|
|
239 |
args.max_seq_len, |
|
|
240 |
self.n_local_kv_heads, |
|
|
241 |
self.head_dim, |
|
|
242 |
) |
|
|
243 |
).cuda() |
|
|
244 |
self.cache_v = torch.zeros( |
|
|
245 |
( |
|
|
246 |
args.max_batch_size, |
|
|
247 |
args.max_seq_len, |
|
|
248 |
self.n_local_kv_heads, |
|
|
249 |
self.head_dim, |
|
|
250 |
) |
|
|
251 |
).cuda() |
|
|
252 |
|
|
|
253 |
def forward( |
|
|
254 |
self, |
|
|
255 |
x: torch.Tensor, |
|
|
256 |
start_pos: int, |
|
|
257 |
freqs_cis: torch.Tensor, |
|
|
258 |
mask: Optional[torch.Tensor], |
|
|
259 |
): |
|
|
260 |
""" |
|
|
261 |
Forward pass of the attention module. |
|
|
262 |
|
|
|
263 |
Args: |
|
|
264 |
x (torch.Tensor): Input tensor. |
|
|
265 |
start_pos (int): Starting position for caching. |
|
|
266 |
freqs_cis (torch.Tensor): Precomputed frequency tensor. |
|
|
267 |
mask (torch.Tensor, optional): Attention mask tensor. |
|
|
268 |
|
|
|
269 |
Returns: |
|
|
270 |
torch.Tensor: Output tensor after attention. |
|
|
271 |
|
|
|
272 |
""" |
|
|
273 |
bsz, seqlen, _ = x.shape |
|
|
274 |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
|
275 |
|
|
|
276 |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
|
277 |
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
278 |
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
279 |
|
|
|
280 |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) |
|
|
281 |
|
|
|
282 |
self.cache_k = self.cache_k.to(xq) |
|
|
283 |
self.cache_v = self.cache_v.to(xq) |
|
|
284 |
|
|
|
285 |
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk |
|
|
286 |
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv |
|
|
287 |
|
|
|
288 |
keys = self.cache_k[:bsz, : start_pos + seqlen] |
|
|
289 |
values = self.cache_v[:bsz, : start_pos + seqlen] |
|
|
290 |
|
|
|
291 |
# repeat k/v heads if n_kv_heads < n_heads |
|
|
292 |
keys = repeat_kv(keys, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim) |
|
|
293 |
values = repeat_kv(values, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim) |
|
|
294 |
|
|
|
295 |
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) |
|
|
296 |
keys = keys.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) |
|
|
297 |
values = values.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim) |
|
|
298 |
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
299 |
if mask is not None: |
|
|
300 |
scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen) |
|
|
301 |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
|
302 |
output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) |
|
|
303 |
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) |
|
|
304 |
return self.wo(output) |
|
|
305 |
|
|
|
306 |
|
|
|
307 |
class FeedForward(nn.Module): |
|
|
308 |
def __init__( |
|
|
309 |
self, |
|
|
310 |
dim: int, |
|
|
311 |
hidden_dim: int, |
|
|
312 |
multiple_of: int, |
|
|
313 |
ffn_dim_multiplier: Optional[float], |
|
|
314 |
): |
|
|
315 |
""" |
|
|
316 |
Initialize the FeedForward module. |
|
|
317 |
|
|
|
318 |
Args: |
|
|
319 |
dim (int): Input dimension. |
|
|
320 |
hidden_dim (int): Hidden dimension of the feedforward layer. |
|
|
321 |
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. |
|
|
322 |
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. |
|
|
323 |
|
|
|
324 |
Attributes: |
|
|
325 |
w1 (ColumnParallelLinear): Linear transformation for the first layer. |
|
|
326 |
w2 (RowParallelLinear): Linear transformation for the second layer. |
|
|
327 |
w3 (ColumnParallelLinear): Linear transformation for the third layer. |
|
|
328 |
|
|
|
329 |
""" |
|
|
330 |
super().__init__() |
|
|
331 |
hidden_dim = int(2 * hidden_dim / 3) |
|
|
332 |
# custom dim factor multiplier |
|
|
333 |
if ffn_dim_multiplier is not None: |
|
|
334 |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
|
335 |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
336 |
|
|
|
337 |
self.w1 = ColumnParallelLinear( |
|
|
338 |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x |
|
|
339 |
) |
|
|
340 |
self.w2 = RowParallelLinear( |
|
|
341 |
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x |
|
|
342 |
) |
|
|
343 |
self.w3 = ColumnParallelLinear( |
|
|
344 |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x |
|
|
345 |
) |
|
|
346 |
|
|
|
347 |
def forward(self, x): |
|
|
348 |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
349 |
|
|
|
350 |
|
|
|
351 |
class TransformerBlock(nn.Module): |
|
|
352 |
def __init__(self, layer_id: int, args: ModelArgs): |
|
|
353 |
""" |
|
|
354 |
Initialize a TransformerBlock. |
|
|
355 |
|
|
|
356 |
Args: |
|
|
357 |
layer_id (int): Identifier for the layer. |
|
|
358 |
args (ModelArgs): Model configuration parameters. |
|
|
359 |
|
|
|
360 |
Attributes: |
|
|
361 |
n_heads (int): Number of attention heads. |
|
|
362 |
dim (int): Dimension size of the model. |
|
|
363 |
head_dim (int): Dimension size of each attention head. |
|
|
364 |
attention (Attention): Attention module. |
|
|
365 |
feed_forward (FeedForward): FeedForward module. |
|
|
366 |
layer_id (int): Identifier for the layer. |
|
|
367 |
attention_norm (RMSNorm): Layer normalization for attention output. |
|
|
368 |
ffn_norm (RMSNorm): Layer normalization for feedforward output. |
|
|
369 |
|
|
|
370 |
""" |
|
|
371 |
super().__init__() |
|
|
372 |
self.n_heads = args.n_heads |
|
|
373 |
self.dim = args.dim |
|
|
374 |
self.head_dim = args.dim // args.n_heads |
|
|
375 |
self.attention = Attention(args) |
|
|
376 |
self.feed_forward = FeedForward( |
|
|
377 |
dim=args.dim, |
|
|
378 |
hidden_dim=4 * args.dim, |
|
|
379 |
multiple_of=args.multiple_of, |
|
|
380 |
ffn_dim_multiplier=args.ffn_dim_multiplier, |
|
|
381 |
) |
|
|
382 |
self.layer_id = layer_id |
|
|
383 |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
384 |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
385 |
|
|
|
386 |
def forward( |
|
|
387 |
self, |
|
|
388 |
x: torch.Tensor, |
|
|
389 |
start_pos: int, |
|
|
390 |
freqs_cis: torch.Tensor, |
|
|
391 |
mask: Optional[torch.Tensor], |
|
|
392 |
): |
|
|
393 |
""" |
|
|
394 |
Perform a forward pass through the TransformerBlock. |
|
|
395 |
|
|
|
396 |
Args: |
|
|
397 |
x (torch.Tensor): Input tensor. |
|
|
398 |
start_pos (int): Starting position for attention caching. |
|
|
399 |
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. |
|
|
400 |
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None. |
|
|
401 |
|
|
|
402 |
Returns: |
|
|
403 |
torch.Tensor: Output tensor after applying attention and feedforward layers. |
|
|
404 |
|
|
|
405 |
""" |
|
|
406 |
h = x + self.attention.forward( |
|
|
407 |
self.attention_norm(x), start_pos, freqs_cis, mask |
|
|
408 |
) |
|
|
409 |
out = h + self.feed_forward.forward(self.ffn_norm(h)) |
|
|
410 |
return out |
|
|
411 |
|
|
|
412 |
|
|
|
413 |
class Transformer(nn.Module): |
|
|
414 |
def __init__(self, params: ModelArgs): |
|
|
415 |
""" |
|
|
416 |
Initialize a Transformer model. |
|
|
417 |
|
|
|
418 |
Args: |
|
|
419 |
params (ModelArgs): Model configuration parameters. |
|
|
420 |
|
|
|
421 |
Attributes: |
|
|
422 |
params (ModelArgs): Model configuration parameters. |
|
|
423 |
vocab_size (int): Vocabulary size. |
|
|
424 |
n_layers (int): Number of layers in the model. |
|
|
425 |
tok_embeddings (ParallelEmbedding): Token embeddings. |
|
|
426 |
layers (torch.nn.ModuleList): List of Transformer blocks. |
|
|
427 |
norm (RMSNorm): Layer normalization for the model output. |
|
|
428 |
output (ColumnParallelLinear): Linear layer for final output. |
|
|
429 |
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. |
|
|
430 |
|
|
|
431 |
""" |
|
|
432 |
super().__init__() |
|
|
433 |
self.params = params |
|
|
434 |
self.vocab_size = params.vocab_size |
|
|
435 |
self.n_layers = params.n_layers |
|
|
436 |
|
|
|
437 |
self.tok_embeddings = ParallelEmbedding( |
|
|
438 |
params.vocab_size, params.dim, init_method=lambda x: x |
|
|
439 |
) |
|
|
440 |
|
|
|
441 |
self.layers = torch.nn.ModuleList() |
|
|
442 |
for layer_id in range(params.n_layers): |
|
|
443 |
self.layers.append(TransformerBlock(layer_id, params)) |
|
|
444 |
|
|
|
445 |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
|
446 |
self.output = ColumnParallelLinear( |
|
|
447 |
params.dim, params.vocab_size, bias=False, init_method=lambda x: x |
|
|
448 |
) |
|
|
449 |
|
|
|
450 |
self.freqs_cis = precompute_freqs_cis( |
|
|
451 |
# Note that self.params.max_seq_len is multiplied by 2 because the token limit for the Llama 2 generation of models is 4096. |
|
|
452 |
# Adding this multiplier instead of using 4096 directly allows for dynamism of token lengths while training or fine-tuning. |
|
|
453 |
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2 |
|
|
454 |
) |
|
|
455 |
|
|
|
456 |
@torch.inference_mode() |
|
|
457 |
def forward(self, tokens: torch.Tensor, start_pos: int): |
|
|
458 |
""" |
|
|
459 |
Perform a forward pass through the Transformer model. |
|
|
460 |
|
|
|
461 |
Args: |
|
|
462 |
tokens (torch.Tensor): Input token indices. |
|
|
463 |
start_pos (int): Starting position for attention caching. |
|
|
464 |
|
|
|
465 |
Returns: |
|
|
466 |
torch.Tensor: Output logits after applying the Transformer model. |
|
|
467 |
|
|
|
468 |
""" |
|
|
469 |
_bsz, seqlen = tokens.shape |
|
|
470 |
h = self.tok_embeddings(tokens) |
|
|
471 |
self.freqs_cis = self.freqs_cis.to(h.device) |
|
|
472 |
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] |
|
|
473 |
|
|
|
474 |
mask = None |
|
|
475 |
if seqlen > 1: |
|
|
476 |
mask = torch.full( |
|
|
477 |
(seqlen, seqlen), float("-inf"), device=tokens.device |
|
|
478 |
) |
|
|
479 |
|
|
|
480 |
mask = torch.triu(mask, diagonal=1) |
|
|
481 |
|
|
|
482 |
# When performing key-value caching, we compute the attention scores |
|
|
483 |
# only for the new sequence. Thus, the matrix of scores is of size |
|
|
484 |
# (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for |
|
|
485 |
# j > cache_len + i, since row i corresponds to token cache_len + i. |
|
|
486 |
mask = torch.hstack([ |
|
|
487 |
torch.zeros((seqlen, start_pos), device=tokens.device), |
|
|
488 |
mask |
|
|
489 |
]).type_as(h) |
|
|
490 |
|
|
|
491 |
for layer in self.layers: |
|
|
492 |
h = layer(h, start_pos, freqs_cis, mask) |
|
|
493 |
h = self.norm(h) |
|
|
494 |
output = self.output(h).float() |
|
|
495 |
return output |