--- a +++ b/src/llama-main/llama/generation.py @@ -0,0 +1,421 @@ +# Copyright (c) Meta Platforms, Inc. and affiliates. +# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. + +import json +import os +import sys +import time +from pathlib import Path +from typing import List, Literal, Optional, Tuple, TypedDict + +import torch +import torch.nn.functional as F +from fairscale.nn.model_parallel.initialize import ( + get_model_parallel_rank, + initialize_model_parallel, + model_parallel_is_initialized, +) + +from llama.model import ModelArgs, Transformer +from llama.tokenizer import Tokenizer + +Role = Literal["system", "user", "assistant"] + + +class Message(TypedDict): + role: Role + content: str + + +class CompletionPrediction(TypedDict, total=False): + generation: str + tokens: List[str] # not required + logprobs: List[float] # not required + + +class ChatPrediction(TypedDict, total=False): + generation: Message + tokens: List[str] # not required + logprobs: List[float] # not required + + +Dialog = List[Message] + +B_INST, E_INST = "[INST]", "[/INST]" +B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" + +SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"] +UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt." + + +class Llama: + @staticmethod + def build( + ckpt_dir: str, + tokenizer_path: str, + max_seq_len: int, + max_batch_size: int, + model_parallel_size: Optional[int] = None, + seed: int = 1, + ) -> "Llama": + """ + Build a Llama instance by initializing and loading a pre-trained model. + + Args: + ckpt_dir (str): Path to the directory containing checkpoint files. + tokenizer_path (str): Path to the tokenizer file. + max_seq_len (int): Maximum sequence length for input text. + max_batch_size (int): Maximum batch size for inference. + model_parallel_size (Optional[int], optional): Number of model parallel processes. + If not provided, it's determined from the environment. Defaults to None. + + Returns: + Llama: An instance of the Llama class with the loaded model and tokenizer. + + Raises: + AssertionError: If there are no checkpoint files in the specified directory, + or if the model parallel size does not match the number of checkpoint files. + + Note: + This method initializes the distributed process group, sets the device to CUDA, + and loads the pre-trained model and tokenizer. + + """ + if not torch.distributed.is_initialized(): + torch.distributed.init_process_group("nccl") + if not model_parallel_is_initialized(): + if model_parallel_size is None: + model_parallel_size = int(os.environ.get("WORLD_SIZE", 1)) + initialize_model_parallel(model_parallel_size) + + local_rank = int(os.environ.get("LOCAL_RANK", 0)) + torch.cuda.set_device(local_rank) + + # seed must be the same in all processes + torch.manual_seed(seed) + + if local_rank > 0: + sys.stdout = open(os.devnull, "w") + + start_time = time.time() + checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) + assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" + assert model_parallel_size == len( + checkpoints + ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" + ckpt_path = checkpoints[get_model_parallel_rank()] + checkpoint = torch.load(ckpt_path, map_location="cpu") + with open(Path(ckpt_dir) / "params.json", "r") as f: + params = json.loads(f.read()) + + model_args: ModelArgs = ModelArgs( + max_seq_len=max_seq_len, + max_batch_size=max_batch_size, + **params, + ) + tokenizer = Tokenizer(model_path=tokenizer_path) + model_args.vocab_size = tokenizer.n_words + torch.set_default_tensor_type(torch.cuda.HalfTensor) + model = Transformer(model_args) + model.load_state_dict(checkpoint, strict=False) + print(f"Loaded in {time.time() - start_time:.2f} seconds") + + return Llama(model, tokenizer) + + def __init__(self, model: Transformer, tokenizer: Tokenizer): + self.model = model + self.tokenizer = tokenizer + + @torch.inference_mode() + def generate( + self, + prompt_tokens: List[List[int]], + max_gen_len: int, + temperature: float = 0.6, + top_p: float = 0.9, + logprobs: bool = False, + echo: bool = False, + ) -> Tuple[List[List[int]], Optional[List[List[float]]]]: + """ + Generate text sequences based on provided prompts using the language generation model. + + Args: + prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers. + max_gen_len (int): Maximum length of the generated text sequence. + temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. + top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. + logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. + echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. + + Returns: + Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities. + + Note: + This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness. + If logprobs is True, token log probabilities are computed for each generated token. + + """ + params = self.model.params + bsz = len(prompt_tokens) + assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) + + min_prompt_len = min(len(t) for t in prompt_tokens) + max_prompt_len = max(len(t) for t in prompt_tokens) + assert max_prompt_len <= params.max_seq_len + total_len = min(params.max_seq_len, max_gen_len + max_prompt_len) + + pad_id = self.tokenizer.pad_id + tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda") + for k, t in enumerate(prompt_tokens): + tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") + if logprobs: + token_logprobs = torch.zeros_like(tokens, dtype=torch.float) + + prev_pos = 0 + eos_reached = torch.tensor([False] * bsz, device="cuda") + input_text_mask = tokens != pad_id + if min_prompt_len == total_len: + logits = self.model.forward(tokens, prev_pos) + token_logprobs = -F.cross_entropy( + input=logits.transpose(1, 2), + target=tokens, + reduction="none", + ignore_index=pad_id, + ) + + for cur_pos in range(min_prompt_len, total_len): + logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) + if temperature > 0: + probs = torch.softmax(logits[:, -1] / temperature, dim=-1) + next_token = sample_top_p(probs, top_p) + else: + next_token = torch.argmax(logits[:, -1], dim=-1) + + next_token = next_token.reshape(-1) + # only replace token if prompt has already been generated + next_token = torch.where( + input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token + ) + tokens[:, cur_pos] = next_token + if logprobs: + token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( + input=logits.transpose(1, 2), + target=tokens[:, prev_pos + 1 : cur_pos + 1], + reduction="none", + ignore_index=pad_id, + ) + eos_reached |= (~input_text_mask[:, cur_pos]) & ( + next_token == self.tokenizer.eos_id + ) + prev_pos = cur_pos + if all(eos_reached): + break + + if logprobs: + token_logprobs = token_logprobs.tolist() + out_tokens, out_logprobs = [], [] + for i, toks in enumerate(tokens.tolist()): + # cut to max gen len + start = 0 if echo else len(prompt_tokens[i]) + toks = toks[start : len(prompt_tokens[i]) + max_gen_len] + probs = None + if logprobs: + probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len] + # cut to eos tok if any + if self.tokenizer.eos_id in toks: + eos_idx = toks.index(self.tokenizer.eos_id) + toks = toks[:eos_idx] + probs = probs[:eos_idx] if logprobs else None + out_tokens.append(toks) + out_logprobs.append(probs) + return (out_tokens, out_logprobs if logprobs else None) + + def text_completion( + self, + prompts: List[str], + temperature: float = 0.6, + top_p: float = 0.9, + max_gen_len: Optional[int] = None, + logprobs: bool = False, + echo: bool = False, + ) -> List[CompletionPrediction]: + """ + Perform text completion for a list of prompts using the language generation model. + + Args: + prompts (List[str]): List of text prompts for completion. + temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. + top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. + max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence. + If not provided, it's set to the model's maximum sequence length minus 1. + logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. + echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. + + Returns: + List[CompletionPrediction]: List of completion predictions, each containing the generated text completion. + + Note: + This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness. + If logprobs is True, token log probabilities are computed for each generated token. + + """ + if max_gen_len is None: + max_gen_len = self.model.params.max_seq_len - 1 + prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts] + generation_tokens, generation_logprobs = self.generate( + prompt_tokens=prompt_tokens, + max_gen_len=max_gen_len, + temperature=temperature, + top_p=top_p, + logprobs=logprobs, + echo=echo, + ) + if logprobs: + return [ + { + "generation": self.tokenizer.decode(t), + "tokens": [self.tokenizer.decode(x) for x in t], + "logprobs": logprobs_i, + } + for t, logprobs_i in zip(generation_tokens, generation_logprobs) + ] + return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens] + + def chat_completion( + self, + dialogs: List[Dialog], + temperature: float = 0.6, + top_p: float = 0.9, + max_gen_len: Optional[int] = None, + logprobs: bool = False, + ) -> List[ChatPrediction]: + """ + Generate assistant responses for a list of conversational dialogs using the language generation model. + + Args: + dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages. + temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. + top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. + max_gen_len (Optional[int], optional): Maximum length of the generated response sequence. + If not provided, it's set to the model's maximum sequence length minus 1. + logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. + + Returns: + List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response. + + Raises: + AssertionError: If the last message in a dialog is not from the user. + AssertionError: If the dialog roles are not in the required 'user', 'assistant', and optional 'system' order. + + Note: + This method generates assistant responses for the provided conversational dialogs. + It employs nucleus sampling to introduce controlled randomness in text generation. + If logprobs is True, token log probabilities are computed for each generated token. + + """ + if max_gen_len is None: + max_gen_len = self.model.params.max_seq_len - 1 + prompt_tokens = [] + unsafe_requests = [] + for dialog in dialogs: + unsafe_requests.append( + any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog]) + ) + if dialog[0]["role"] == "system": + dialog = [ + { + "role": dialog[1]["role"], + "content": B_SYS + + dialog[0]["content"] + + E_SYS + + dialog[1]["content"], + } + ] + dialog[2:] + assert all([msg["role"] == "user" for msg in dialog[::2]]) and all( + [msg["role"] == "assistant" for msg in dialog[1::2]] + ), ( + "model only supports 'system', 'user' and 'assistant' roles, " + "starting with 'system', then 'user' and alternating (u/a/u/a/u...)" + ) + dialog_tokens: List[int] = sum( + [ + self.tokenizer.encode( + f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ", + bos=True, + eos=True, + ) + for prompt, answer in zip( + dialog[::2], + dialog[1::2], + ) + ], + [], + ) + assert ( + dialog[-1]["role"] == "user" + ), f"Last message must be from user, got {dialog[-1]['role']}" + dialog_tokens += self.tokenizer.encode( + f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}", + bos=True, + eos=False, + ) + prompt_tokens.append(dialog_tokens) + + generation_tokens, generation_logprobs = self.generate( + prompt_tokens=prompt_tokens, + max_gen_len=max_gen_len, + temperature=temperature, + top_p=top_p, + logprobs=logprobs, + ) + if logprobs: + return [ + { + "generation": { + "role": "assistant", + "content": self.tokenizer.decode(t) + if not unsafe + else UNSAFE_ERROR, + }, + "tokens": [self.tokenizer.decode(x) for x in t], + "logprobs": logprobs_i, + } + for t, logprobs_i, unsafe in zip( + generation_tokens, generation_logprobs, unsafe_requests + ) + ] + return [ + { + "generation": { + "role": "assistant", + "content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR, + } + } + for t, unsafe in zip(generation_tokens, unsafe_requests) + ] + + +def sample_top_p(probs, p): + """ + Perform top-p (nucleus) sampling on a probability distribution. + + Args: + probs (torch.Tensor): Probability distribution tensor. + p (float): Probability threshold for top-p sampling. + + Returns: + torch.Tensor: Sampled token indices. + + Note: + Top-p sampling selects the smallest set of tokens whose cumulative probability mass + exceeds the threshold p. The distribution is renormalized based on the selected tokens. + + """ + probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) + probs_sum = torch.cumsum(probs_sort, dim=-1) + mask = probs_sum - probs_sort > p + probs_sort[mask] = 0.0 + probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) + next_token = torch.multinomial(probs_sort, num_samples=1) + next_token = torch.gather(probs_idx, -1, next_token) + return next_token