Switch to side-by-side view

--- a
+++ b/src/llama-main/llama/generation.py
@@ -0,0 +1,421 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
+
+import json
+import os
+import sys
+import time
+from pathlib import Path
+from typing import List, Literal, Optional, Tuple, TypedDict
+
+import torch
+import torch.nn.functional as F
+from fairscale.nn.model_parallel.initialize import (
+    get_model_parallel_rank,
+    initialize_model_parallel,
+    model_parallel_is_initialized,
+)
+
+from llama.model import ModelArgs, Transformer
+from llama.tokenizer import Tokenizer
+
+Role = Literal["system", "user", "assistant"]
+
+
+class Message(TypedDict):
+    role: Role
+    content: str
+
+
+class CompletionPrediction(TypedDict, total=False):
+    generation: str
+    tokens: List[str]  # not required
+    logprobs: List[float]  # not required
+
+
+class ChatPrediction(TypedDict, total=False):
+    generation: Message
+    tokens: List[str]  # not required
+    logprobs: List[float]  # not required
+
+
+Dialog = List[Message]
+
+B_INST, E_INST = "[INST]", "[/INST]"
+B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
+
+SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"]
+UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt."
+
+
+class Llama:
+    @staticmethod
+    def build(
+        ckpt_dir: str,
+        tokenizer_path: str,
+        max_seq_len: int,
+        max_batch_size: int,
+        model_parallel_size: Optional[int] = None,
+        seed: int = 1,
+    ) -> "Llama":
+        """
+        Build a Llama instance by initializing and loading a pre-trained model.
+
+        Args:
+            ckpt_dir (str): Path to the directory containing checkpoint files.
+            tokenizer_path (str): Path to the tokenizer file.
+            max_seq_len (int): Maximum sequence length for input text.
+            max_batch_size (int): Maximum batch size for inference.
+            model_parallel_size (Optional[int], optional): Number of model parallel processes.
+                If not provided, it's determined from the environment. Defaults to None.
+
+        Returns:
+            Llama: An instance of the Llama class with the loaded model and tokenizer.
+
+        Raises:
+            AssertionError: If there are no checkpoint files in the specified directory,
+                or if the model parallel size does not match the number of checkpoint files.
+
+        Note:
+            This method initializes the distributed process group, sets the device to CUDA,
+            and loads the pre-trained model and tokenizer.
+
+        """
+        if not torch.distributed.is_initialized():
+            torch.distributed.init_process_group("nccl")
+        if not model_parallel_is_initialized():
+            if model_parallel_size is None:
+                model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
+            initialize_model_parallel(model_parallel_size)
+
+        local_rank = int(os.environ.get("LOCAL_RANK", 0))
+        torch.cuda.set_device(local_rank)
+
+        # seed must be the same in all processes
+        torch.manual_seed(seed)
+
+        if local_rank > 0:
+            sys.stdout = open(os.devnull, "w")
+
+        start_time = time.time()
+        checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
+        assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
+        assert model_parallel_size == len(
+            checkpoints
+        ), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
+        ckpt_path = checkpoints[get_model_parallel_rank()]
+        checkpoint = torch.load(ckpt_path, map_location="cpu")
+        with open(Path(ckpt_dir) / "params.json", "r") as f:
+            params = json.loads(f.read())
+
+        model_args: ModelArgs = ModelArgs(
+            max_seq_len=max_seq_len,
+            max_batch_size=max_batch_size,
+            **params,
+        )
+        tokenizer = Tokenizer(model_path=tokenizer_path)
+        model_args.vocab_size = tokenizer.n_words
+        torch.set_default_tensor_type(torch.cuda.HalfTensor)
+        model = Transformer(model_args)
+        model.load_state_dict(checkpoint, strict=False)
+        print(f"Loaded in {time.time() - start_time:.2f} seconds")
+
+        return Llama(model, tokenizer)
+
+    def __init__(self, model: Transformer, tokenizer: Tokenizer):
+        self.model = model
+        self.tokenizer = tokenizer
+
+    @torch.inference_mode()
+    def generate(
+        self,
+        prompt_tokens: List[List[int]],
+        max_gen_len: int,
+        temperature: float = 0.6,
+        top_p: float = 0.9,
+        logprobs: bool = False,
+        echo: bool = False,
+    ) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
+        """
+        Generate text sequences based on provided prompts using the language generation model.
+
+        Args:
+            prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
+            max_gen_len (int): Maximum length of the generated text sequence.
+            temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
+            top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
+            logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
+            echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
+
+        Returns:
+            Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.
+
+        Note:
+            This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
+            If logprobs is True, token log probabilities are computed for each generated token.
+
+        """
+        params = self.model.params
+        bsz = len(prompt_tokens)
+        assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
+
+        min_prompt_len = min(len(t) for t in prompt_tokens)
+        max_prompt_len = max(len(t) for t in prompt_tokens)
+        assert max_prompt_len <= params.max_seq_len
+        total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
+
+        pad_id = self.tokenizer.pad_id
+        tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
+        for k, t in enumerate(prompt_tokens):
+            tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
+        if logprobs:
+            token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
+
+        prev_pos = 0
+        eos_reached = torch.tensor([False] * bsz, device="cuda")
+        input_text_mask = tokens != pad_id
+        if min_prompt_len == total_len:
+            logits = self.model.forward(tokens, prev_pos)
+            token_logprobs = -F.cross_entropy(
+                input=logits.transpose(1, 2),
+                target=tokens,
+                reduction="none",
+                ignore_index=pad_id,
+            )
+
+        for cur_pos in range(min_prompt_len, total_len):
+            logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
+            if temperature > 0:
+                probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
+                next_token = sample_top_p(probs, top_p)
+            else:
+                next_token = torch.argmax(logits[:, -1], dim=-1)
+
+            next_token = next_token.reshape(-1)
+            # only replace token if prompt has already been generated
+            next_token = torch.where(
+                input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token
+            )
+            tokens[:, cur_pos] = next_token
+            if logprobs:
+                token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
+                    input=logits.transpose(1, 2),
+                    target=tokens[:, prev_pos + 1 : cur_pos + 1],
+                    reduction="none",
+                    ignore_index=pad_id,
+                )
+            eos_reached |= (~input_text_mask[:, cur_pos]) & (
+                next_token == self.tokenizer.eos_id
+            )
+            prev_pos = cur_pos
+            if all(eos_reached):
+                break
+
+        if logprobs:
+            token_logprobs = token_logprobs.tolist()
+        out_tokens, out_logprobs = [], []
+        for i, toks in enumerate(tokens.tolist()):
+            # cut to max gen len
+            start = 0 if echo else len(prompt_tokens[i])
+            toks = toks[start : len(prompt_tokens[i]) + max_gen_len]
+            probs = None
+            if logprobs:
+                probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len]
+            # cut to eos tok if any
+            if self.tokenizer.eos_id in toks:
+                eos_idx = toks.index(self.tokenizer.eos_id)
+                toks = toks[:eos_idx]
+                probs = probs[:eos_idx] if logprobs else None
+            out_tokens.append(toks)
+            out_logprobs.append(probs)
+        return (out_tokens, out_logprobs if logprobs else None)
+
+    def text_completion(
+        self,
+        prompts: List[str],
+        temperature: float = 0.6,
+        top_p: float = 0.9,
+        max_gen_len: Optional[int] = None,
+        logprobs: bool = False,
+        echo: bool = False,
+    ) -> List[CompletionPrediction]:
+        """
+        Perform text completion for a list of prompts using the language generation model.
+
+        Args:
+            prompts (List[str]): List of text prompts for completion.
+            temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
+            top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
+            max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence.
+                If not provided, it's set to the model's maximum sequence length minus 1.
+            logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
+            echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
+
+        Returns:
+            List[CompletionPrediction]: List of completion predictions, each containing the generated text completion.
+
+        Note:
+            This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness.
+            If logprobs is True, token log probabilities are computed for each generated token.
+
+        """
+        if max_gen_len is None:
+            max_gen_len = self.model.params.max_seq_len - 1
+        prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts]
+        generation_tokens, generation_logprobs = self.generate(
+            prompt_tokens=prompt_tokens,
+            max_gen_len=max_gen_len,
+            temperature=temperature,
+            top_p=top_p,
+            logprobs=logprobs,
+            echo=echo,
+        )
+        if logprobs:
+            return [
+                {
+                    "generation": self.tokenizer.decode(t),
+                    "tokens": [self.tokenizer.decode(x) for x in t],
+                    "logprobs": logprobs_i,
+                }
+                for t, logprobs_i in zip(generation_tokens, generation_logprobs)
+            ]
+        return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens]
+
+    def chat_completion(
+        self,
+        dialogs: List[Dialog],
+        temperature: float = 0.6,
+        top_p: float = 0.9,
+        max_gen_len: Optional[int] = None,
+        logprobs: bool = False,
+    ) -> List[ChatPrediction]:
+        """
+        Generate assistant responses for a list of conversational dialogs using the language generation model.
+
+        Args:
+            dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages.
+            temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
+            top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
+            max_gen_len (Optional[int], optional): Maximum length of the generated response sequence.
+                If not provided, it's set to the model's maximum sequence length minus 1.
+            logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
+
+        Returns:
+            List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response.
+
+        Raises:
+            AssertionError: If the last message in a dialog is not from the user.
+            AssertionError: If the dialog roles are not in the required 'user', 'assistant', and optional 'system' order.
+
+        Note:
+            This method generates assistant responses for the provided conversational dialogs.
+            It employs nucleus sampling to introduce controlled randomness in text generation.
+            If logprobs is True, token log probabilities are computed for each generated token.
+
+        """
+        if max_gen_len is None:
+            max_gen_len = self.model.params.max_seq_len - 1
+        prompt_tokens = []
+        unsafe_requests = []
+        for dialog in dialogs:
+            unsafe_requests.append(
+                any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog])
+            )
+            if dialog[0]["role"] == "system":
+                dialog = [
+                    {
+                        "role": dialog[1]["role"],
+                        "content": B_SYS
+                        + dialog[0]["content"]
+                        + E_SYS
+                        + dialog[1]["content"],
+                    }
+                ] + dialog[2:]
+            assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(
+                [msg["role"] == "assistant" for msg in dialog[1::2]]
+            ), (
+                "model only supports 'system', 'user' and 'assistant' roles, "
+                "starting with 'system', then 'user' and alternating (u/a/u/a/u...)"
+            )
+            dialog_tokens: List[int] = sum(
+                [
+                    self.tokenizer.encode(
+                        f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
+                        bos=True,
+                        eos=True,
+                    )
+                    for prompt, answer in zip(
+                        dialog[::2],
+                        dialog[1::2],
+                    )
+                ],
+                [],
+            )
+            assert (
+                dialog[-1]["role"] == "user"
+            ), f"Last message must be from user, got {dialog[-1]['role']}"
+            dialog_tokens += self.tokenizer.encode(
+                f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
+                bos=True,
+                eos=False,
+            )
+            prompt_tokens.append(dialog_tokens)
+
+        generation_tokens, generation_logprobs = self.generate(
+            prompt_tokens=prompt_tokens,
+            max_gen_len=max_gen_len,
+            temperature=temperature,
+            top_p=top_p,
+            logprobs=logprobs,
+        )
+        if logprobs:
+            return [
+                {
+                    "generation": {
+                        "role": "assistant",
+                        "content": self.tokenizer.decode(t)
+                        if not unsafe
+                        else UNSAFE_ERROR,
+                    },
+                    "tokens": [self.tokenizer.decode(x) for x in t],
+                    "logprobs": logprobs_i,
+                }
+                for t, logprobs_i, unsafe in zip(
+                    generation_tokens, generation_logprobs, unsafe_requests
+                )
+            ]
+        return [
+            {
+                "generation": {
+                    "role": "assistant",
+                    "content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR,
+                }
+            }
+            for t, unsafe in zip(generation_tokens, unsafe_requests)
+        ]
+
+
+def sample_top_p(probs, p):
+    """
+    Perform top-p (nucleus) sampling on a probability distribution.
+
+    Args:
+        probs (torch.Tensor): Probability distribution tensor.
+        p (float): Probability threshold for top-p sampling.
+
+    Returns:
+        torch.Tensor: Sampled token indices.
+
+    Note:
+        Top-p sampling selects the smallest set of tokens whose cumulative probability mass
+        exceeds the threshold p. The distribution is renormalized based on the selected tokens.
+
+    """
+    probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
+    probs_sum = torch.cumsum(probs_sort, dim=-1)
+    mask = probs_sum - probs_sort > p
+    probs_sort[mask] = 0.0
+    probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
+    next_token = torch.multinomial(probs_sort, num_samples=1)
+    next_token = torch.gather(probs_idx, -1, next_token)
+    return next_token