|
a |
|
b/src/llama-main/llama/generation.py |
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates. |
|
|
2 |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. |
|
|
3 |
|
|
|
4 |
import json |
|
|
5 |
import os |
|
|
6 |
import sys |
|
|
7 |
import time |
|
|
8 |
from pathlib import Path |
|
|
9 |
from typing import List, Literal, Optional, Tuple, TypedDict |
|
|
10 |
|
|
|
11 |
import torch |
|
|
12 |
import torch.nn.functional as F |
|
|
13 |
from fairscale.nn.model_parallel.initialize import ( |
|
|
14 |
get_model_parallel_rank, |
|
|
15 |
initialize_model_parallel, |
|
|
16 |
model_parallel_is_initialized, |
|
|
17 |
) |
|
|
18 |
|
|
|
19 |
from llama.model import ModelArgs, Transformer |
|
|
20 |
from llama.tokenizer import Tokenizer |
|
|
21 |
|
|
|
22 |
Role = Literal["system", "user", "assistant"] |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
class Message(TypedDict): |
|
|
26 |
role: Role |
|
|
27 |
content: str |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
class CompletionPrediction(TypedDict, total=False): |
|
|
31 |
generation: str |
|
|
32 |
tokens: List[str] # not required |
|
|
33 |
logprobs: List[float] # not required |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
class ChatPrediction(TypedDict, total=False): |
|
|
37 |
generation: Message |
|
|
38 |
tokens: List[str] # not required |
|
|
39 |
logprobs: List[float] # not required |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
Dialog = List[Message] |
|
|
43 |
|
|
|
44 |
B_INST, E_INST = "[INST]", "[/INST]" |
|
|
45 |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" |
|
|
46 |
|
|
|
47 |
SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"] |
|
|
48 |
UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt." |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
class Llama: |
|
|
52 |
@staticmethod |
|
|
53 |
def build( |
|
|
54 |
ckpt_dir: str, |
|
|
55 |
tokenizer_path: str, |
|
|
56 |
max_seq_len: int, |
|
|
57 |
max_batch_size: int, |
|
|
58 |
model_parallel_size: Optional[int] = None, |
|
|
59 |
seed: int = 1, |
|
|
60 |
) -> "Llama": |
|
|
61 |
""" |
|
|
62 |
Build a Llama instance by initializing and loading a pre-trained model. |
|
|
63 |
|
|
|
64 |
Args: |
|
|
65 |
ckpt_dir (str): Path to the directory containing checkpoint files. |
|
|
66 |
tokenizer_path (str): Path to the tokenizer file. |
|
|
67 |
max_seq_len (int): Maximum sequence length for input text. |
|
|
68 |
max_batch_size (int): Maximum batch size for inference. |
|
|
69 |
model_parallel_size (Optional[int], optional): Number of model parallel processes. |
|
|
70 |
If not provided, it's determined from the environment. Defaults to None. |
|
|
71 |
|
|
|
72 |
Returns: |
|
|
73 |
Llama: An instance of the Llama class with the loaded model and tokenizer. |
|
|
74 |
|
|
|
75 |
Raises: |
|
|
76 |
AssertionError: If there are no checkpoint files in the specified directory, |
|
|
77 |
or if the model parallel size does not match the number of checkpoint files. |
|
|
78 |
|
|
|
79 |
Note: |
|
|
80 |
This method initializes the distributed process group, sets the device to CUDA, |
|
|
81 |
and loads the pre-trained model and tokenizer. |
|
|
82 |
|
|
|
83 |
""" |
|
|
84 |
if not torch.distributed.is_initialized(): |
|
|
85 |
torch.distributed.init_process_group("nccl") |
|
|
86 |
if not model_parallel_is_initialized(): |
|
|
87 |
if model_parallel_size is None: |
|
|
88 |
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1)) |
|
|
89 |
initialize_model_parallel(model_parallel_size) |
|
|
90 |
|
|
|
91 |
local_rank = int(os.environ.get("LOCAL_RANK", 0)) |
|
|
92 |
torch.cuda.set_device(local_rank) |
|
|
93 |
|
|
|
94 |
# seed must be the same in all processes |
|
|
95 |
torch.manual_seed(seed) |
|
|
96 |
|
|
|
97 |
if local_rank > 0: |
|
|
98 |
sys.stdout = open(os.devnull, "w") |
|
|
99 |
|
|
|
100 |
start_time = time.time() |
|
|
101 |
checkpoints = sorted(Path(ckpt_dir).glob("*.pth")) |
|
|
102 |
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}" |
|
|
103 |
assert model_parallel_size == len( |
|
|
104 |
checkpoints |
|
|
105 |
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}" |
|
|
106 |
ckpt_path = checkpoints[get_model_parallel_rank()] |
|
|
107 |
checkpoint = torch.load(ckpt_path, map_location="cpu") |
|
|
108 |
with open(Path(ckpt_dir) / "params.json", "r") as f: |
|
|
109 |
params = json.loads(f.read()) |
|
|
110 |
|
|
|
111 |
model_args: ModelArgs = ModelArgs( |
|
|
112 |
max_seq_len=max_seq_len, |
|
|
113 |
max_batch_size=max_batch_size, |
|
|
114 |
**params, |
|
|
115 |
) |
|
|
116 |
tokenizer = Tokenizer(model_path=tokenizer_path) |
|
|
117 |
model_args.vocab_size = tokenizer.n_words |
|
|
118 |
torch.set_default_tensor_type(torch.cuda.HalfTensor) |
|
|
119 |
model = Transformer(model_args) |
|
|
120 |
model.load_state_dict(checkpoint, strict=False) |
|
|
121 |
print(f"Loaded in {time.time() - start_time:.2f} seconds") |
|
|
122 |
|
|
|
123 |
return Llama(model, tokenizer) |
|
|
124 |
|
|
|
125 |
def __init__(self, model: Transformer, tokenizer: Tokenizer): |
|
|
126 |
self.model = model |
|
|
127 |
self.tokenizer = tokenizer |
|
|
128 |
|
|
|
129 |
@torch.inference_mode() |
|
|
130 |
def generate( |
|
|
131 |
self, |
|
|
132 |
prompt_tokens: List[List[int]], |
|
|
133 |
max_gen_len: int, |
|
|
134 |
temperature: float = 0.6, |
|
|
135 |
top_p: float = 0.9, |
|
|
136 |
logprobs: bool = False, |
|
|
137 |
echo: bool = False, |
|
|
138 |
) -> Tuple[List[List[int]], Optional[List[List[float]]]]: |
|
|
139 |
""" |
|
|
140 |
Generate text sequences based on provided prompts using the language generation model. |
|
|
141 |
|
|
|
142 |
Args: |
|
|
143 |
prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers. |
|
|
144 |
max_gen_len (int): Maximum length of the generated text sequence. |
|
|
145 |
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. |
|
|
146 |
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. |
|
|
147 |
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. |
|
|
148 |
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. |
|
|
149 |
|
|
|
150 |
Returns: |
|
|
151 |
Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities. |
|
|
152 |
|
|
|
153 |
Note: |
|
|
154 |
This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness. |
|
|
155 |
If logprobs is True, token log probabilities are computed for each generated token. |
|
|
156 |
|
|
|
157 |
""" |
|
|
158 |
params = self.model.params |
|
|
159 |
bsz = len(prompt_tokens) |
|
|
160 |
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size) |
|
|
161 |
|
|
|
162 |
min_prompt_len = min(len(t) for t in prompt_tokens) |
|
|
163 |
max_prompt_len = max(len(t) for t in prompt_tokens) |
|
|
164 |
assert max_prompt_len <= params.max_seq_len |
|
|
165 |
total_len = min(params.max_seq_len, max_gen_len + max_prompt_len) |
|
|
166 |
|
|
|
167 |
pad_id = self.tokenizer.pad_id |
|
|
168 |
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda") |
|
|
169 |
for k, t in enumerate(prompt_tokens): |
|
|
170 |
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") |
|
|
171 |
if logprobs: |
|
|
172 |
token_logprobs = torch.zeros_like(tokens, dtype=torch.float) |
|
|
173 |
|
|
|
174 |
prev_pos = 0 |
|
|
175 |
eos_reached = torch.tensor([False] * bsz, device="cuda") |
|
|
176 |
input_text_mask = tokens != pad_id |
|
|
177 |
if min_prompt_len == total_len: |
|
|
178 |
logits = self.model.forward(tokens, prev_pos) |
|
|
179 |
token_logprobs = -F.cross_entropy( |
|
|
180 |
input=logits.transpose(1, 2), |
|
|
181 |
target=tokens, |
|
|
182 |
reduction="none", |
|
|
183 |
ignore_index=pad_id, |
|
|
184 |
) |
|
|
185 |
|
|
|
186 |
for cur_pos in range(min_prompt_len, total_len): |
|
|
187 |
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos) |
|
|
188 |
if temperature > 0: |
|
|
189 |
probs = torch.softmax(logits[:, -1] / temperature, dim=-1) |
|
|
190 |
next_token = sample_top_p(probs, top_p) |
|
|
191 |
else: |
|
|
192 |
next_token = torch.argmax(logits[:, -1], dim=-1) |
|
|
193 |
|
|
|
194 |
next_token = next_token.reshape(-1) |
|
|
195 |
# only replace token if prompt has already been generated |
|
|
196 |
next_token = torch.where( |
|
|
197 |
input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token |
|
|
198 |
) |
|
|
199 |
tokens[:, cur_pos] = next_token |
|
|
200 |
if logprobs: |
|
|
201 |
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy( |
|
|
202 |
input=logits.transpose(1, 2), |
|
|
203 |
target=tokens[:, prev_pos + 1 : cur_pos + 1], |
|
|
204 |
reduction="none", |
|
|
205 |
ignore_index=pad_id, |
|
|
206 |
) |
|
|
207 |
eos_reached |= (~input_text_mask[:, cur_pos]) & ( |
|
|
208 |
next_token == self.tokenizer.eos_id |
|
|
209 |
) |
|
|
210 |
prev_pos = cur_pos |
|
|
211 |
if all(eos_reached): |
|
|
212 |
break |
|
|
213 |
|
|
|
214 |
if logprobs: |
|
|
215 |
token_logprobs = token_logprobs.tolist() |
|
|
216 |
out_tokens, out_logprobs = [], [] |
|
|
217 |
for i, toks in enumerate(tokens.tolist()): |
|
|
218 |
# cut to max gen len |
|
|
219 |
start = 0 if echo else len(prompt_tokens[i]) |
|
|
220 |
toks = toks[start : len(prompt_tokens[i]) + max_gen_len] |
|
|
221 |
probs = None |
|
|
222 |
if logprobs: |
|
|
223 |
probs = token_logprobs[i][start : len(prompt_tokens[i]) + max_gen_len] |
|
|
224 |
# cut to eos tok if any |
|
|
225 |
if self.tokenizer.eos_id in toks: |
|
|
226 |
eos_idx = toks.index(self.tokenizer.eos_id) |
|
|
227 |
toks = toks[:eos_idx] |
|
|
228 |
probs = probs[:eos_idx] if logprobs else None |
|
|
229 |
out_tokens.append(toks) |
|
|
230 |
out_logprobs.append(probs) |
|
|
231 |
return (out_tokens, out_logprobs if logprobs else None) |
|
|
232 |
|
|
|
233 |
def text_completion( |
|
|
234 |
self, |
|
|
235 |
prompts: List[str], |
|
|
236 |
temperature: float = 0.6, |
|
|
237 |
top_p: float = 0.9, |
|
|
238 |
max_gen_len: Optional[int] = None, |
|
|
239 |
logprobs: bool = False, |
|
|
240 |
echo: bool = False, |
|
|
241 |
) -> List[CompletionPrediction]: |
|
|
242 |
""" |
|
|
243 |
Perform text completion for a list of prompts using the language generation model. |
|
|
244 |
|
|
|
245 |
Args: |
|
|
246 |
prompts (List[str]): List of text prompts for completion. |
|
|
247 |
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. |
|
|
248 |
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. |
|
|
249 |
max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence. |
|
|
250 |
If not provided, it's set to the model's maximum sequence length minus 1. |
|
|
251 |
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. |
|
|
252 |
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False. |
|
|
253 |
|
|
|
254 |
Returns: |
|
|
255 |
List[CompletionPrediction]: List of completion predictions, each containing the generated text completion. |
|
|
256 |
|
|
|
257 |
Note: |
|
|
258 |
This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness. |
|
|
259 |
If logprobs is True, token log probabilities are computed for each generated token. |
|
|
260 |
|
|
|
261 |
""" |
|
|
262 |
if max_gen_len is None: |
|
|
263 |
max_gen_len = self.model.params.max_seq_len - 1 |
|
|
264 |
prompt_tokens = [self.tokenizer.encode(x, bos=True, eos=False) for x in prompts] |
|
|
265 |
generation_tokens, generation_logprobs = self.generate( |
|
|
266 |
prompt_tokens=prompt_tokens, |
|
|
267 |
max_gen_len=max_gen_len, |
|
|
268 |
temperature=temperature, |
|
|
269 |
top_p=top_p, |
|
|
270 |
logprobs=logprobs, |
|
|
271 |
echo=echo, |
|
|
272 |
) |
|
|
273 |
if logprobs: |
|
|
274 |
return [ |
|
|
275 |
{ |
|
|
276 |
"generation": self.tokenizer.decode(t), |
|
|
277 |
"tokens": [self.tokenizer.decode(x) for x in t], |
|
|
278 |
"logprobs": logprobs_i, |
|
|
279 |
} |
|
|
280 |
for t, logprobs_i in zip(generation_tokens, generation_logprobs) |
|
|
281 |
] |
|
|
282 |
return [{"generation": self.tokenizer.decode(t)} for t in generation_tokens] |
|
|
283 |
|
|
|
284 |
def chat_completion( |
|
|
285 |
self, |
|
|
286 |
dialogs: List[Dialog], |
|
|
287 |
temperature: float = 0.6, |
|
|
288 |
top_p: float = 0.9, |
|
|
289 |
max_gen_len: Optional[int] = None, |
|
|
290 |
logprobs: bool = False, |
|
|
291 |
) -> List[ChatPrediction]: |
|
|
292 |
""" |
|
|
293 |
Generate assistant responses for a list of conversational dialogs using the language generation model. |
|
|
294 |
|
|
|
295 |
Args: |
|
|
296 |
dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages. |
|
|
297 |
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6. |
|
|
298 |
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9. |
|
|
299 |
max_gen_len (Optional[int], optional): Maximum length of the generated response sequence. |
|
|
300 |
If not provided, it's set to the model's maximum sequence length minus 1. |
|
|
301 |
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. |
|
|
302 |
|
|
|
303 |
Returns: |
|
|
304 |
List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response. |
|
|
305 |
|
|
|
306 |
Raises: |
|
|
307 |
AssertionError: If the last message in a dialog is not from the user. |
|
|
308 |
AssertionError: If the dialog roles are not in the required 'user', 'assistant', and optional 'system' order. |
|
|
309 |
|
|
|
310 |
Note: |
|
|
311 |
This method generates assistant responses for the provided conversational dialogs. |
|
|
312 |
It employs nucleus sampling to introduce controlled randomness in text generation. |
|
|
313 |
If logprobs is True, token log probabilities are computed for each generated token. |
|
|
314 |
|
|
|
315 |
""" |
|
|
316 |
if max_gen_len is None: |
|
|
317 |
max_gen_len = self.model.params.max_seq_len - 1 |
|
|
318 |
prompt_tokens = [] |
|
|
319 |
unsafe_requests = [] |
|
|
320 |
for dialog in dialogs: |
|
|
321 |
unsafe_requests.append( |
|
|
322 |
any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog]) |
|
|
323 |
) |
|
|
324 |
if dialog[0]["role"] == "system": |
|
|
325 |
dialog = [ |
|
|
326 |
{ |
|
|
327 |
"role": dialog[1]["role"], |
|
|
328 |
"content": B_SYS |
|
|
329 |
+ dialog[0]["content"] |
|
|
330 |
+ E_SYS |
|
|
331 |
+ dialog[1]["content"], |
|
|
332 |
} |
|
|
333 |
] + dialog[2:] |
|
|
334 |
assert all([msg["role"] == "user" for msg in dialog[::2]]) and all( |
|
|
335 |
[msg["role"] == "assistant" for msg in dialog[1::2]] |
|
|
336 |
), ( |
|
|
337 |
"model only supports 'system', 'user' and 'assistant' roles, " |
|
|
338 |
"starting with 'system', then 'user' and alternating (u/a/u/a/u...)" |
|
|
339 |
) |
|
|
340 |
dialog_tokens: List[int] = sum( |
|
|
341 |
[ |
|
|
342 |
self.tokenizer.encode( |
|
|
343 |
f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ", |
|
|
344 |
bos=True, |
|
|
345 |
eos=True, |
|
|
346 |
) |
|
|
347 |
for prompt, answer in zip( |
|
|
348 |
dialog[::2], |
|
|
349 |
dialog[1::2], |
|
|
350 |
) |
|
|
351 |
], |
|
|
352 |
[], |
|
|
353 |
) |
|
|
354 |
assert ( |
|
|
355 |
dialog[-1]["role"] == "user" |
|
|
356 |
), f"Last message must be from user, got {dialog[-1]['role']}" |
|
|
357 |
dialog_tokens += self.tokenizer.encode( |
|
|
358 |
f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}", |
|
|
359 |
bos=True, |
|
|
360 |
eos=False, |
|
|
361 |
) |
|
|
362 |
prompt_tokens.append(dialog_tokens) |
|
|
363 |
|
|
|
364 |
generation_tokens, generation_logprobs = self.generate( |
|
|
365 |
prompt_tokens=prompt_tokens, |
|
|
366 |
max_gen_len=max_gen_len, |
|
|
367 |
temperature=temperature, |
|
|
368 |
top_p=top_p, |
|
|
369 |
logprobs=logprobs, |
|
|
370 |
) |
|
|
371 |
if logprobs: |
|
|
372 |
return [ |
|
|
373 |
{ |
|
|
374 |
"generation": { |
|
|
375 |
"role": "assistant", |
|
|
376 |
"content": self.tokenizer.decode(t) |
|
|
377 |
if not unsafe |
|
|
378 |
else UNSAFE_ERROR, |
|
|
379 |
}, |
|
|
380 |
"tokens": [self.tokenizer.decode(x) for x in t], |
|
|
381 |
"logprobs": logprobs_i, |
|
|
382 |
} |
|
|
383 |
for t, logprobs_i, unsafe in zip( |
|
|
384 |
generation_tokens, generation_logprobs, unsafe_requests |
|
|
385 |
) |
|
|
386 |
] |
|
|
387 |
return [ |
|
|
388 |
{ |
|
|
389 |
"generation": { |
|
|
390 |
"role": "assistant", |
|
|
391 |
"content": self.tokenizer.decode(t) if not unsafe else UNSAFE_ERROR, |
|
|
392 |
} |
|
|
393 |
} |
|
|
394 |
for t, unsafe in zip(generation_tokens, unsafe_requests) |
|
|
395 |
] |
|
|
396 |
|
|
|
397 |
|
|
|
398 |
def sample_top_p(probs, p): |
|
|
399 |
""" |
|
|
400 |
Perform top-p (nucleus) sampling on a probability distribution. |
|
|
401 |
|
|
|
402 |
Args: |
|
|
403 |
probs (torch.Tensor): Probability distribution tensor. |
|
|
404 |
p (float): Probability threshold for top-p sampling. |
|
|
405 |
|
|
|
406 |
Returns: |
|
|
407 |
torch.Tensor: Sampled token indices. |
|
|
408 |
|
|
|
409 |
Note: |
|
|
410 |
Top-p sampling selects the smallest set of tokens whose cumulative probability mass |
|
|
411 |
exceeds the threshold p. The distribution is renormalized based on the selected tokens. |
|
|
412 |
|
|
|
413 |
""" |
|
|
414 |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) |
|
|
415 |
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
|
416 |
mask = probs_sum - probs_sort > p |
|
|
417 |
probs_sort[mask] = 0.0 |
|
|
418 |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
|
419 |
next_token = torch.multinomial(probs_sort, num_samples=1) |
|
|
420 |
next_token = torch.gather(probs_idx, -1, next_token) |
|
|
421 |
return next_token |