|
a |
|
b/src/codellama-main/llama/model.py |
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates. |
|
|
2 |
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. |
|
|
3 |
|
|
|
4 |
import math |
|
|
5 |
from dataclasses import dataclass |
|
|
6 |
from typing import Any, Optional, Tuple |
|
|
7 |
|
|
|
8 |
import fairscale.nn.model_parallel.initialize as fs_init |
|
|
9 |
import torch |
|
|
10 |
import torch.nn.functional as F |
|
|
11 |
from fairscale.nn.model_parallel.layers import ( |
|
|
12 |
ColumnParallelLinear, |
|
|
13 |
ParallelEmbedding, |
|
|
14 |
RowParallelLinear, |
|
|
15 |
) |
|
|
16 |
from torch import nn |
|
|
17 |
|
|
|
18 |
if torch.cuda.is_available(): |
|
|
19 |
device = "cuda" |
|
|
20 |
elif torch.backends.mps.is_available(): |
|
|
21 |
device = "mps" |
|
|
22 |
else: |
|
|
23 |
device = "cpu" |
|
|
24 |
|
|
|
25 |
@dataclass |
|
|
26 |
class ModelArgs: |
|
|
27 |
dim: int = 4096 |
|
|
28 |
n_layers: int = 32 |
|
|
29 |
n_heads: int = 32 |
|
|
30 |
n_kv_heads: Optional[int] = None |
|
|
31 |
vocab_size: int = -1 # defined later by tokenizer |
|
|
32 |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 |
|
|
33 |
ffn_dim_multiplier: Optional[float] = None |
|
|
34 |
norm_eps: float = 1e-5 |
|
|
35 |
rope_theta: float = 10000 |
|
|
36 |
|
|
|
37 |
max_batch_size: int = 32 |
|
|
38 |
max_seq_len: int = 2048 |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
class RMSNorm(torch.nn.Module): |
|
|
42 |
def __init__(self, dim: int, eps: float = 1e-6): |
|
|
43 |
super().__init__() |
|
|
44 |
self.eps = eps |
|
|
45 |
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
46 |
|
|
|
47 |
def _norm(self, x): |
|
|
48 |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
49 |
|
|
|
50 |
def forward(self, x): |
|
|
51 |
output = self._norm(x.float()).type_as(x) |
|
|
52 |
return output * self.weight |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
|
56 |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
|
57 |
|
|
|
58 |
t = torch.arange(end, device=freqs.device, dtype=torch.float32) # type: ignore |
|
|
59 |
freqs = torch.outer(t, freqs) # type: ignore |
|
|
60 |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 |
|
|
61 |
return freqs_cis |
|
|
62 |
|
|
|
63 |
|
|
|
64 |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
|
65 |
ndim = x.ndim |
|
|
66 |
assert 0 <= 1 < ndim |
|
|
67 |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
|
68 |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
|
69 |
return freqs_cis.view(*shape) |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
def apply_rotary_emb( |
|
|
73 |
xq: torch.Tensor, |
|
|
74 |
xk: torch.Tensor, |
|
|
75 |
freqs_cis: torch.Tensor, |
|
|
76 |
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
77 |
if not torch.cuda.is_available(): |
|
|
78 |
xq = xq.to('cpu') |
|
|
79 |
xk = xk.to('cpu') |
|
|
80 |
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
|
81 |
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
|
82 |
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
|
83 |
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
|
84 |
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
|
85 |
return xq_out.type_as(xq).to(device), xk_out.type_as(xk).to(device) |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
89 |
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
|
90 |
bs, slen, n_kv_heads, head_dim = x.shape |
|
|
91 |
if n_rep == 1: |
|
|
92 |
return x |
|
|
93 |
return ( |
|
|
94 |
x[:, :, :, None, :] |
|
|
95 |
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
|
96 |
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
|
97 |
) |
|
|
98 |
|
|
|
99 |
|
|
|
100 |
class Attention(nn.Module): |
|
|
101 |
def __init__(self, args: ModelArgs): |
|
|
102 |
super().__init__() |
|
|
103 |
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
|
104 |
model_parallel_size = fs_init.get_model_parallel_world_size() |
|
|
105 |
self.n_local_heads = args.n_heads // model_parallel_size |
|
|
106 |
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size |
|
|
107 |
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
|
108 |
self.head_dim = args.dim // args.n_heads |
|
|
109 |
|
|
|
110 |
self.wq = ColumnParallelLinear( |
|
|
111 |
args.dim, |
|
|
112 |
args.n_heads * self.head_dim, |
|
|
113 |
bias=False, |
|
|
114 |
gather_output=False, |
|
|
115 |
init_method=lambda x: x, |
|
|
116 |
) |
|
|
117 |
self.wk = ColumnParallelLinear( |
|
|
118 |
args.dim, |
|
|
119 |
self.n_kv_heads * self.head_dim, |
|
|
120 |
bias=False, |
|
|
121 |
gather_output=False, |
|
|
122 |
init_method=lambda x: x, |
|
|
123 |
) |
|
|
124 |
self.wv = ColumnParallelLinear( |
|
|
125 |
args.dim, |
|
|
126 |
self.n_kv_heads * self.head_dim, |
|
|
127 |
bias=False, |
|
|
128 |
gather_output=False, |
|
|
129 |
init_method=lambda x: x, |
|
|
130 |
) |
|
|
131 |
self.wo = RowParallelLinear( |
|
|
132 |
args.n_heads * self.head_dim, |
|
|
133 |
args.dim, |
|
|
134 |
bias=False, |
|
|
135 |
input_is_parallel=True, |
|
|
136 |
init_method=lambda x: x, |
|
|
137 |
) |
|
|
138 |
|
|
|
139 |
self.cache_k = torch.zeros( |
|
|
140 |
( |
|
|
141 |
args.max_batch_size, |
|
|
142 |
args.max_seq_len, |
|
|
143 |
self.n_local_kv_heads, |
|
|
144 |
self.head_dim, |
|
|
145 |
) |
|
|
146 |
).to(device) |
|
|
147 |
self.cache_v = torch.zeros( |
|
|
148 |
( |
|
|
149 |
args.max_batch_size, |
|
|
150 |
args.max_seq_len, |
|
|
151 |
self.n_local_kv_heads, |
|
|
152 |
self.head_dim, |
|
|
153 |
) |
|
|
154 |
).to(device) |
|
|
155 |
|
|
|
156 |
def forward( |
|
|
157 |
self, |
|
|
158 |
x: torch.Tensor, |
|
|
159 |
start_pos: int, |
|
|
160 |
freqs_cis: torch.Tensor, |
|
|
161 |
mask: Optional[torch.Tensor], |
|
|
162 |
): |
|
|
163 |
bsz, seqlen, _ = x.shape |
|
|
164 |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
|
165 |
|
|
|
166 |
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
|
167 |
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
168 |
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
169 |
|
|
|
170 |
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) |
|
|
171 |
|
|
|
172 |
self.cache_k = self.cache_k.to(xq) |
|
|
173 |
self.cache_v = self.cache_v.to(xq) |
|
|
174 |
|
|
|
175 |
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk |
|
|
176 |
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv |
|
|
177 |
|
|
|
178 |
keys = self.cache_k[:bsz, : start_pos + seqlen] |
|
|
179 |
values = self.cache_v[:bsz, : start_pos + seqlen] |
|
|
180 |
|
|
|
181 |
# repeat k/v heads if n_kv_heads < n_heads |
|
|
182 |
keys = repeat_kv(keys, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) |
|
|
183 |
values = repeat_kv(values, self.n_rep) # (bs, seqlen, n_local_heads, head_dim) |
|
|
184 |
|
|
|
185 |
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim) |
|
|
186 |
keys = keys.transpose(1, 2) |
|
|
187 |
values = values.transpose(1, 2) |
|
|
188 |
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
189 |
if mask is not None: |
|
|
190 |
scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen) |
|
|
191 |
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
|
192 |
output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim) |
|
|
193 |
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) |
|
|
194 |
return self.wo(output) |
|
|
195 |
|
|
|
196 |
|
|
|
197 |
class FeedForward(nn.Module): |
|
|
198 |
def __init__( |
|
|
199 |
self, |
|
|
200 |
dim: int, |
|
|
201 |
hidden_dim: int, |
|
|
202 |
multiple_of: int, |
|
|
203 |
ffn_dim_multiplier: Optional[float], |
|
|
204 |
): |
|
|
205 |
super().__init__() |
|
|
206 |
hidden_dim = int(2 * hidden_dim / 3) |
|
|
207 |
# custom dim factor multiplier |
|
|
208 |
if ffn_dim_multiplier is not None: |
|
|
209 |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
|
210 |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
211 |
|
|
|
212 |
self.w1 = ColumnParallelLinear( |
|
|
213 |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x |
|
|
214 |
) |
|
|
215 |
self.w2 = RowParallelLinear( |
|
|
216 |
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x |
|
|
217 |
) |
|
|
218 |
self.w3 = ColumnParallelLinear( |
|
|
219 |
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x |
|
|
220 |
) |
|
|
221 |
|
|
|
222 |
def forward(self, x): |
|
|
223 |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
224 |
|
|
|
225 |
|
|
|
226 |
class TransformerBlock(nn.Module): |
|
|
227 |
def __init__(self, layer_id: int, args: ModelArgs): |
|
|
228 |
super().__init__() |
|
|
229 |
self.n_heads = args.n_heads |
|
|
230 |
self.dim = args.dim |
|
|
231 |
self.head_dim = args.dim // args.n_heads |
|
|
232 |
self.attention = Attention(args) |
|
|
233 |
self.feed_forward = FeedForward( |
|
|
234 |
dim=args.dim, |
|
|
235 |
hidden_dim=4 * args.dim, |
|
|
236 |
multiple_of=args.multiple_of, |
|
|
237 |
ffn_dim_multiplier=args.ffn_dim_multiplier, |
|
|
238 |
) |
|
|
239 |
self.layer_id = layer_id |
|
|
240 |
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
241 |
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
242 |
|
|
|
243 |
def forward( |
|
|
244 |
self, |
|
|
245 |
x: torch.Tensor, |
|
|
246 |
start_pos: int, |
|
|
247 |
freqs_cis: torch.Tensor, |
|
|
248 |
mask: Optional[torch.Tensor], |
|
|
249 |
): |
|
|
250 |
h = x + self.attention.forward( |
|
|
251 |
self.attention_norm(x), start_pos, freqs_cis, mask |
|
|
252 |
) |
|
|
253 |
out = h + self.feed_forward.forward(self.ffn_norm(h)) |
|
|
254 |
return out |
|
|
255 |
|
|
|
256 |
|
|
|
257 |
class Transformer(nn.Module): |
|
|
258 |
def __init__(self, params: ModelArgs): |
|
|
259 |
super().__init__() |
|
|
260 |
self.params = params |
|
|
261 |
self.vocab_size = params.vocab_size |
|
|
262 |
self.n_layers = params.n_layers |
|
|
263 |
|
|
|
264 |
self.tok_embeddings = ParallelEmbedding( |
|
|
265 |
params.vocab_size, params.dim, init_method=lambda x: x, |
|
|
266 |
) |
|
|
267 |
|
|
|
268 |
self.layers = torch.nn.ModuleList() |
|
|
269 |
for layer_id in range(params.n_layers): |
|
|
270 |
self.layers.append(TransformerBlock(layer_id, params)) |
|
|
271 |
|
|
|
272 |
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
|
273 |
self.output = ColumnParallelLinear( |
|
|
274 |
params.dim, params.vocab_size, bias=False, init_method=lambda x: x |
|
|
275 |
) |
|
|
276 |
|
|
|
277 |
self.freqs_cis = precompute_freqs_cis( |
|
|
278 |
self.params.dim // self.params.n_heads, |
|
|
279 |
self.params.max_seq_len * 2, |
|
|
280 |
params.rope_theta, |
|
|
281 |
) |
|
|
282 |
|
|
|
283 |
@torch.inference_mode() |
|
|
284 |
def forward(self, tokens: torch.Tensor, start_pos: int): |
|
|
285 |
_bsz, seqlen = tokens.shape |
|
|
286 |
h = self.tok_embeddings(tokens) |
|
|
287 |
self.freqs_cis = self.freqs_cis.to("cuda" if device == "cuda" else "cpu") |
|
|
288 |
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] |
|
|
289 |
|
|
|
290 |
mask = None |
|
|
291 |
if seqlen > 1: |
|
|
292 |
mask = torch.full( |
|
|
293 |
(1, 1, seqlen, seqlen), float("-inf"), device=torch.device('cpu') |
|
|
294 |
) |
|
|
295 |
mask = mask.to(torch.float32).triu(diagonal=start_pos+1).type_as(h) |
|
|
296 |
|
|
|
297 |
for layer in self.layers: |
|
|
298 |
h = layer(h, start_pos, freqs_cis, (mask.to(device) if mask is not None else mask)) |
|
|
299 |
h = self.norm(h) |
|
|
300 |
output = self.output(h).float() |
|
|
301 |
return output |