Diff of /README.md [000000] .. [014e6e]

Switch to unified view

a b/README.md
1
2
```shell
3
  /$$$$$$              /$$               /$$$$$$$   /$$$$$$ 
4
 /$$__  $$            | $$              | $$__  $$ /$$__  $$
5
| $$  \ $$ /$$   /$$ /$$$$$$    /$$$$$$ | $$  \ $$| $$  \ $$
6
| $$$$$$$$| $$  | $$|_  $$_/   /$$__  $$| $$$$$$$ | $$$$$$$$
7
| $$__  $$| $$  | $$  | $$    | $$  \ $$| $$__  $$| $$__  $$
8
| $$  | $$| $$  | $$  | $$ /$$| $$  | $$| $$  \ $$| $$  | $$
9
| $$  | $$|  $$$$$$/  |  $$$$/|  $$$$$$/| $$$$$$$/| $$  | $$
10
|__/  |__/ \______/    \___/   \______/ |_______/ |__/  |__/
11
                                                            
12
           Automated Bioinformatics Analysis
13
               www.joshuachou.ink/about
14
```
15
16
**An AI Agent for Fully Automated Multi-omic Analyses**.
17
18
(**Automated Bioinformatics Analysis via AutoBA**)
19
20
[Juexiao Zhou](https://www.joshuachou.ink/about/), Bin Zhang, Guowei Li, Xiuying Chen, Haoyang Li, Xiaopeng Xu, Siyuan Chen, Wenjia He, Chencheng Xu, Liwei Liu, Xin Gao
21
22
King Abdullah University of Science and Technology, KAUST
23
24
Huawei Technologies Co., Ltd
25
26
<a href='media/advs.202407094.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
27
28
https://github.com/JoshuaChou2018/AutoBA/assets/25849209/3334417a-de59-421c-aa5e-e2ac16ce90db
29
30
## What's New
31
32
- **[2024/08]** Our paper is published online at [Advanced Science](https://onlinelibrary.wiley.com/doi/10.1002/advs.202407094)
33
- **[2024/08]** We integrated ollama to make it easier to use local LLMs and released the latest stable version `v0.4.0`
34
- **[2024/03]** Now we support retrieval-augmented generation (RAG) to increase robustness of AutoBA, to use it, please upgrade openai==1.13.3 and install llama-index.
35
- **[2024/02]** Now we support deepseek-coder-6.7b-instruct (failed test), deepseek-coder-7b-instruct-v1.5 (passed test), deepseek-coder-33b-instruct (passed test), to use it, please upgrade transformers==4.35.0.
36
- **[2024/01]** Don't like the command line mode? Now we provide a new GUI and released the milestone stable version `v0.2.0` 🎉
37
- **[2024/01]** Updated JSON mode for gpt-3.5-turbo-1106, gpt-4-1106-preview, the output of these two models will be more stable
38
- **[2024/01]** Updated the support for ChatGPT-4 (gpt-4-32k-0613: Currently points to gpt-4-32k-0613, 32,768 tokens, Up to Sep 2021; gpt-4-1106-preview: GPT-4 Turbo, 128,000 tokens, Up to Apr 2023)
39
- **[2024/01]** Updated the support for ChatGPT-3.5 (gpt-3.5-turbo: openai chatgpt-3.5, 4,096 tokens and gpt-3.5-turbo-1106: openai chatgpt-3.5, 16,385 tokens)
40
- **[2023/12]** We added LLM support for the executor and the ACR module and released the milestone stable version `v0.1.1`
41
- **[2023/12]** We provided the latest docker version to simplify the installation process.
42
- **[2023/12]** New feature: automated code repairing (ACR module) added, add llama2-chat backends.
43
- **[2023/11]** We updated the executor and released the latest stable version (v0.0.2) and are working on automatic error feedback and code fixing.
44
- **[2023/09]** We integrated codellama 7b-Instruct, 13b-Instruct, 34b-Instruct, now users can choose to use chatgpt or local llm as backends, we currently recommend using chatgpt because tests have found that codellama is not as effective as chatgpt for complex bioinformatics tasks.
45
- **[2023/09]** We are pleased to announce the official release of AutoBA's latest version `v0.0.1`! 🎉🎉🎉
46
47
## TODO list
48
49
We're working hard to achieve more features, welcome to PRs!
50
51
- [x] Automatic error feedback and code fixing
52
- [x] Offer local LLMs (eg. code llama) as options for users
53
- [x] Provide a docker version, simplify the installation process
54
- [x] A UI-based YAML generator
55
- [x] Support deepseek coder
56
- [x] Support RAG
57
- [x] Support ollama
58
- [ ] Pack into a conda package, simplify the installation process
59
- [ ] Interactive mode
60
- [ ] GUI for data visualization
61
- [ ] Continue from breakpoint
62
- [ ] ...
63
- 
64
**We appreciate all contributions to improve AutoBA.**
65
66
The `main` branch serves as the primary branch, while the development branch is `dev`.
67
68
Thank you for your unwavering support and enthusiasm, and let's work together to make AutoBA even more robust and powerful! If you want to contribute, please PR to the latest `dev` branch. 💪
69
70
71
## Installation
72
73
### Command line
74
```shell
75
# (mandatory) for basic functions
76
curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname -m).sh"
77
bash Mambaforge-$(uname)-$(uname -m).sh
78
git clone https://github.com/JoshuaChou2018/AutoBA.git
79
80
mamba create -n abc_runtime python==3.10 -y
81
mamba activate abc_runtime
82
# Then manually:
83
add conda-forge and bioconda to ~/mambaforge/.condarc
84
            
85
mamba create -n abc python==3.10
86
mamba activate abc
87
mamba install -c anaconda yaml==0.2.5 -y
88
pip install openai==1.13.3 pyyaml==6.0
89
pip install transformers==4.35.0
90
pip install accelerate==0.29.2
91
pip install bitsandbytes==0.43.1
92
pip install vllm==0.4.1
93
94
## (optional) for RAG
95
pip install llama-index==0.10.14
96
pip install llama-index-embeddings-huggingface
97
98
# (optional) for local llm with ollama
99
mamba install langchain-community==0.2.6 -y
100
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.4 sh
101
## pull the model before using it with AutoBA
102
ollama run llama3.1
103
104
# (optional) for gui version
105
pip install gradio==4.14.0
106
107
# (optional) for local llm (llama2)
108
cd AutoBA/src/codellama-main
109
pip install -e .
110
111
## apply for a download link at https://ai.meta.com/resources/models-and-libraries/llama-downloads/
112
## download codellama model weights: 7b-Instruct,13b-Instruct,34b-Instruct
113
cd src/codellama-main
114
bash download.sh
115
## download llama2 model weights: 7B-chat,13B-chat,70B-chat
116
cd src/llama-main
117
bash download.sh
118
## download hf version model weights
119
git lfs install
120
cd src/codellama-main
121
git clone https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
122
git clone https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
123
git clone https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
124
125
# (optional) for local llm (deepseek)
126
cd AutoBA/src/deepseek
127
git clone https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
128
git clone https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
129
git clone https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
130
git clone https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat
131
132
# (optional) for features under development: the yaml generator UI
133
pip install plotly==5.14.1 dash==2.9.3 pandas==2.0.1 dash-mantine-components==0.12.1
134
```
135
136
### Docker
137
138
Please refer to https://docs.docker.com/engine/install to install Docker first.
139
140
```shell
141
# (mandatory) for basic functions
142
docker pull joshuachou666/autoba:cuda12.2.2-cudnn8-devel-ubuntu22.04-autoba0.1.2
143
docker run --rm --gpus all -it joshuachou666/autoba:cuda12.2.2-cudnn8-devel-ubuntu22.04-autoba0.1.2 /bin/bash
144
## Enter the shell in docker image
145
conda activate abc
146
cd AutoBA
147
```
148
149
If you get this error: **could not select device driver "" with capabilities: [[gpu]]**, then run the following codes:
150
```shell
151
# (optional) for using GPU in docker
152
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
153
  sudo apt-key add -
154
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
155
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
156
  sudo tee /etc/apt/sources.list.d/nvidia-docker.list
157
sudo apt-get update
158
sudo apt install -y nvidia-docker2
159
sudo systemctl daemon-reload
160
sudo systemctl restart docker
161
```
162
163
Try the previous codes again.
164
165
### Conda
166
```shell
167
Coming soon...
168
```
169
170
## Get Started
171
172
### Understand files
173
174
`./example` contains several examples for you to start.
175
176
Under `./example`, `config.yaml` defines your files and goals. Defining `data_list`, `output_dir` and `goal_description`
177
in `config.yaml` is mandatory before running `app.py`. **Absolute paths rather than relative paths are recommended for all file paths defined in `config.yaml`**.
178
179
180
`app.py` run this file to start.
181
182
### Start with one command
183
184
Run this command to start a simple example with chatgpt as backend (**recommended**).
185
186
`python app.py --config ./examples/case1.1/config.yaml --openai YOUR_OPENAI_API --model gpt-4`
187
188
Execute the code while generating it with ACR module loaded.
189
190
`python app.py --config ./examples/case1.1/config.yaml --openai YOUR_OPENAI_API --model gpt-4 --execute True`
191
192
**Please note that this work uses the GPT-4 API and does not guarantee that GPT-3.5 will work properly in all cases.**
193
194
or with local llm as backend (**not recommended for the moment, in development and only for testing purposes**)
195
196
`python app.py --config ./examples/case1.1/config.yaml --model codellama-7bi`
197
198
or with local llm based on ollama as backend
199
200
`python app.py --config ./examples/case1.1/config.yaml --model ollama_llama3.1`
201
202
### Start GUI version
203
204
Run this command to start a GUI version of AutoBA.
205
206
`python gui.py`
207
208
![image-20240117115345501](https://cdn.jsdelivr.net/gh/JoshuaChou2018/oss@main/uPic/90DjWZ.image-20240117115345501.png)
209
210
### Model Zoo
211
212
**Dynamic Engine: dynamic update version**
213
- gpt-3.5-turbo: Points to the latest gpt-3.5 model
214
- gpt-4-turbo: Points to the latest gpt-4 model
215
- gpt-4o: Points to the latest gpt-4o model
216
- gpt-4o-mini: Points to the latest gpt-4o-mini model
217
- gpt-4: (default)
218
- For more information, please check: https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
219
220
**Ollama Engine:**
221
- ollama_llama3.1: llama3.1
222
- ollama_llama3.1:8b: llama3.1:8b
223
- ollama_mistral: mistral
224
- ...
225
- the `ollama_` prefix is mandatory, for more models, please refer to https://ollama.com/library
226
227
**Fixed Engine: snapshot version**
228
- gpt-3.5-turbo-1106: Updated GPT 3.5 Turbo, 16,385 tokens, Up to Sep 2021
229
- gpt-4-0613: Snapshot of gpt-4 from June 13th 2023 with improved function calling support, 8,192 tokens, Up to Sep 2021
230
- gpt-4-32k-0613: Snapshot of gpt-4-32k from June 13th 2023 with improved function calling support, 32,768 tokens, Up to Sep 2021
231
- gpt-4-1106-preview: GPT-4 Turbo, 128,000 tokens, Up to Apr 2023
232
- codellama-7bi: 7b-Instruct
233
- codellama-13bi: 13b-Instruct
234
- codellama-34bi: 34b-Instruct
235
- llama2-7bc: llama-2-7b-chat
236
- llama2-13bc: llama-2-13b-chat
237
- llama2-70bc: llama-2-70b-chat
238
- deepseek-6.7bi: deepseek-coder-6.7b-instruct
239
- deepseek-7bi: deepseek-coder-7b-instruct-v1.5
240
- deepseek-33bi: deepseek-coder-33b-instruct
241
- deepseek-67bc: deepseek-llm-67b-chat
242
243
## Use Cases
244
245
These cases below may have different ID numbers as those cases in our paper.
246
247
### Example 1: Bulk RNA-Seq
248
249
#### Case 1.1: Find differentially expressed genes
250
251
**Reference**: https://pzweuj.github.io/worstpractice/site/C02_RNA-seq/01.prepare_data/
252
253
Design of `config.yaml`
254
```yaml
255
data_list: [ './examples/case1.1/data/SRR1374921.fastq.gz: single-end mouse rna-seq reads, replicate 1 in LoGlu group',
256
            './examples/case1.1/data/SRR1374922.fastq.gz: single-end mouse rna-seq reads, replicate 2 in LoGlu group',
257
            './examples/case1.1/data/SRR1374923.fastq.gz: single-end mouse rna-seq reads, replicate 1 in HiGlu group',
258
            './examples/case1.1/data/SRR1374924.fastq.gz: single-end mouse rna-seq reads, replicate 2 in HiGlu group',
259
            './examples/case1.1/data/TruSeq3-SE.fa: trimming adapter',
260
            './examples/case1.1/data/mm39.fa: mouse mm39 genome fasta',
261
            './examples/case1.1/data/mm39.ncbiRefSeq.gtf: mouse mm39 genome annotation' ]
262
output_dir: './examples/case1.1/output'
263
goal_description: 'find the differentially expressed genes'
264
```
265
266
##### Download Data
267
```shell
268
wget -P data/ http://hgdownload.soe.ucsc.edu/goldenPath/mm39/bigZips/genes/mm39.ncbiRefSeq.gtf.gz
269
wget -P data/ http://hgdownload.soe.ucsc.edu/goldenPath/mm39/bigZips/mm39.fa.gz
270
gunzip data/mm39.ncbiRefSeq.gtf.gz
271
gunzip data/mm39.fa.gz
272
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/001/SRR1374921/SRR1374921.fastq.gz
273
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/002/SRR1374922/SRR1374922.fastq.gz
274
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/003/SRR1374923/SRR1374923.fastq.gz
275
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/004/SRR1374924/SRR1374924.fastq.gz
276
```
277
278
##### Analyze with AutoBA
279
280
```shell
281
python app.py --config ./examples/case1.1/config.yaml --openai YOUR_OPENAI_API --model gpt-4
282
python app.py --config ./examples/case1.1/config.yaml --model codellama-7bi
283
python app.py --config ./examples/case1.1/config.yaml --model codellama-13bi
284
python app.py --config ./examples/case1.1/config.yaml --model codellama-34bi
285
```
286
287
#### Case 1.2: Identify top5 down-regulated genes in HiGlu group
288
289
**Reference**: https://pzweuj.github.io/worstpractice/site/C02_RNA-seq/01.prepare_data/
290
291
Design of `config.yaml`
292
```yaml
293
data_list: [ './examples/case1.2/data/SRR1374921.fastq.gz: single-end mouse rna-seq reads, replicate 1 in LoGlu group',
294
            './examples/case1.2/data/SRR1374922.fastq.gz: single-end mouse rna-seq reads, replicate 2 in LoGlu group',
295
            './examples/case1.2/data/SRR1374923.fastq.gz: single-end mouse rna-seq reads, replicate 1 in HiGlu group',
296
            './examples/case1.2/data/SRR1374924.fastq.gz: single-end mouse rna-seq reads, replicate 2 in HiGlu group',
297
            './examples/case1.2/data/TruSeq3-SE.fa: trimming adapter',
298
            './examples/case1.2/data/mm39.fa: mouse mm39 genome fasta',
299
            './examples/case1.2/data/mm39.ncbiRefSeq.gtf: mouse mm39 genome annotation' ]
300
output_dir: './examples/case1.2/output'
301
goal_description: 'Identify top5 down-regulated genes in HiGlu group'
302
```
303
304
##### Download Data
305
```shell
306
wget -P data/ http://hgdownload.soe.ucsc.edu/goldenPath/mm39/bigZips/genes/mm39.ncbiRefSeq.gtf.gz
307
wget -P data/ http://hgdownload.soe.ucsc.edu/goldenPath/mm39/bigZips/mm39.fa.gz
308
gunzip data/mm39.ncbiRefSeq.gtf.gz
309
gunzip data/mm39.fa.gz
310
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/001/SRR1374921/SRR1374921.fastq.gz
311
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/002/SRR1374922/SRR1374922.fastq.gz
312
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/003/SRR1374923/SRR1374923.fastq.gz
313
wget -P data/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/004/SRR1374924/SRR1374924.fastq.gz
314
```
315
316
```shell
317
python app.py --config ./examples/case1.2/config.yaml
318
```
319
320
#### Case 1.3: Predict Fusion genes using STAR-Fusion
321
322
**Reference:** https://github.com/STAR-Fusion/STAR-Fusion-Tutorial/wiki
323
324
Design of `config.yaml`
325
```yaml
326
data_list: [ './examples/case1.3/data/rnaseq_1.fastq.gz: RNA-Seq read 1 data (left read)',
327
            './examples/case1.3/data/rnaseq_2.fastq.gz: RNA-Seq read 2 data (right read)',
328
            './examples/case1.3/data/CTAT_HumanFusionLib.mini.dat.gz: a small fusion annotation library',
329
            './examples/case1.3/data/minigenome.fa: small genome sequence consisting of ~750 genes.',
330
            './examples/case1.3/data/minigenome.gtf: transcript structure annotations for these genes' ]
331
output_dir: './examples/case1.3/output'
332
goal_description: 'Predict Fusion genes using STAR-Fusion'
333
```
334
335
##### Download Data
336
337
```shell
338
cd data
339
git clone https://github.com/STAR-Fusion/STAR-Fusion-Tutorial.git
340
mv STAR-Fusion-Tutorial/* .
341
```
342
343
### Example 2: Single Cell RNA-seq Analysis
344
345
#### Case 2.1: Find the differentially expressed genes
346
347
**Reference:** https://www.jianshu.com/p/e22a947e6c60
348
349
Design of `config.yaml`
350
```yaml
351
data_list: [ './examples/case2.1/data/filtered_gene_bc_matrices/hg19: path to 10x mtx data',]
352
output_dir: './examples/case2.1/output'
353
goal_description: 'use scanpy to find the differentially expressed genes'
354
```
355
356
##### Download Data
357
358
```shell
359
wget -P data/ http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz
360
cd data
361
tar zxvf pbmc3k_filtered_gene_bc_matrices.tar.gz
362
```
363
364
#### Case 2.2: Perform clustering
365
366
**Reference:** https://www.jianshu.com/p/e22a947e6c60
367
368
Design of `config.yaml`
369
```yaml
370
data_list: [ './examples/case2.2/data/filtered_gene_bc_matrices/hg19: path to 10x mtx data',]
371
output_dir: './examples/case2.2/output'
372
goal_description: 'use scanpy to perform clustering and visualize the expression level of gene PPBP in the UMAP.'
373
```
374
375
#### Case 2.3: Identify top5 marker genes
376
377
**Reference:** https://www.jianshu.com/p/e22a947e6c60
378
379
Design of `config.yaml`
380
```yaml
381
data_list: [ './examples/case2.3/data/filtered_gene_bc_matrices/hg19: path to 10x mtx data',]
382
output_dir: './examples/case2.3/output'
383
goal_description: 'use scanpy to identify top5 marker genes'
384
```
385
386
### Example 3: ChIP-Seq Analysis
387
388
#### Case 3.1: Call peaks
389
390
**Reference:** https://pzweuj.github.io/2018/08/22/chip-seq-workflow.html
391
392
Design of `config.yaml`
393
394
395
##### Download Data
396
397
```shell
398
# 下载了5个样本,分别是Ring1B、cbx7、SUZ12、RYBP、IgGold。
399
for ((i=204; i<=208; i++)); \
400
do wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR620/SRR620$i/SRR620$i.fastq.gz; \
401
done
402
403
wget http://hgdownload.soe.ucsc.edu/goldenPath/mm39/bigZips/genes/mm39.ncbiRefSeq.gtf.gz
404
wget http://hgdownload.soe.ucsc.edu/goldenPath/mm39/bigZips/mm39.fa.gz
405
gunzip mm39.ncbiRefSeq.gtf.gz
406
gunzip mm39.fa.gz
407
```
408
409
Design of `config.yaml`
410
```yaml
411
data_list: [ './examples/case3.1/data/SRR620204.fastq.gz: chip-seq data for Ring1B',
412
            './examples/case3.1/data/SRR620205.fastq.gz: chip-seq data for cbx7',
413
            './examples/case3.1/data/SRR620206.fastq.gz: chip-seq data for SUZ12',
414
            './examples/case3.1/data/SRR620208.fastq.gz: chip-seq data for IgGold',
415
            './examples/case3.1/data/mm39.ncbiRefSeq.gtf: genome annotations mouse',
416
            './examples/case3.1/data/mm39.fa: mouse genome' ]
417
output_dir: './examples/case3.1/output'
418
goal_description: 'call peaks for protein cbx7 with IgGold as control'
419
```
420
421
#### Case 3.2: Discover motifs within the peaks
422
423
Design of `config.yaml`
424
```yaml
425
data_list: [ './examples/case3.2/data/SRR620204.fastq.gz: chip-seq data for Ring1B',
426
            './examples/case3.2/data/SRR620205.fastq.gz: chip-seq data for cbx7',
427
            './examples/case3.2/data/SRR620206.fastq.gz: chip-seq data for SUZ12',
428
            './examples/case3.2/data/SRR620208.fastq.gz: chip-seq data for IgGold',
429
            './examples/case3.2/data/mm39.ncbiRefSeq.gtf: genome annotations mouse',
430
            './examples/case3.2/data/mm39.fa: mouse genome' ]
431
output_dir: './examples/case3.2/output'
432
goal_description: 'Discover motifs within the peaks of protein SUZ12 with IgGold as control'
433
```
434
435
#### Case 3.3: Functional Enrichment
436
Design of `config.yaml`
437
```yaml
438
data_list: [ './examples/case3.3/data/SRR620204.fastq.gz: chip-seq data for Ring1B',
439
            './examples/case3.3/data/SRR620205.fastq.gz: chip-seq data for cbx7',
440
            './examples/case3.3/data/SRR620206.fastq.gz: chip-seq data for SUZ12',
441
            './examples/case3.3/data/SRR620208.fastq.gz: chip-seq data for IgGold',
442
            './examples/case3.3/data/mm39.ncbiRefSeq.gtf: genome annotations mouse',
443
            './examples/case3.3/data/mm39.fa: mouse genome' ]
444
output_dir: './examples/case3.3/output'
445
goal_description: 'perform functional enrichment for protein Ring1B, use protein IgGold as the control'
446
```
447
448
### Example 4: Spatial Transcriptomics
449
450
#### Case 4.1: Neighborhood enrichment analysis
451
452
**Reference:** https://squidpy.readthedocs.io/en/latest/notebooks/tutorials/tutorial_seqfish.html
453
454
Design of `config.yaml`
455
```yaml
456
data_list: [ './examples/case4.1/data/slice1.h5ad: spatial transcriptomics data for slice 1 in AnnData format',]
457
output_dir: './examples/case4.1/output'
458
goal_description: 'use squidpy for neighborhood enrichment analysis'
459
```
460
461
## Custom Examples for Users
462
463
To use AutoBA in your case, please copy `config.yaml` to your destination and modify it accordingly.
464
Then you are ready to go. We welcome all developers to submit PR to upload your special cases under `./projects`
465
466
## Citation
467
468
If you find this project useful in your research, please consider citing:
469
470
J. Zhou, B. Zhang, G. Li, X. Chen, H. Li, X. Xu, S. Chen, W. He, C. Xu, L. Liu, X. Gao, An AI Agent for Fully Automated Multi-Omic Analyses. Adv. Sci. 2024, 2407094. https://doi.org/10.1002/advs.202407094
471
472
## License
473
474
This project is released under the MIT license.