import sys
import pandas as pd
def read_(file):
# read file
if file.endswith('.csv'):
df = pd.read_csv(file, index_col=0)
elif file.endswith('.csv.gz'):
df = pd.read_csv(file, compression='gzip', index_col=0)
else:
print('\n[Error]: The program cannot infer the format of {} . Currently, only the csv format is supported, please ensure that the file name suffix is .csv or .csv.gz.'.format(file))
sys.exit(0)
return df
def read_omics(args):
omics = []
for file in args.omic_file:
df = read_(file)
df = df.fillna(0) # fill nan with 0
omics.append(df)
return omics
def read_label(args):
file = args.label_file
df = read_(file)
df = df.rename(
columns={df.columns.values[0]: 'label'})
return df
def read_clin(args):
file = args.clin_file
df = None
if not file is None:
df = read_(file)
# fill na
df = df.fillna(0)
return df
def process(df_omics, df_label, df_clin):
# extract patient id
patients = [df_tmp.index.to_list() for df_tmp in df_omics]
patients.append(df_label.index.to_list())
if not df_clin is None:
patients.append(df_clin.index.to_list())
# get shared patients between different data
patients_shared = patients[0]
for i in range(1, len(patients)):
patients_shared = list(set(patients_shared).intersection(patients[i]))
# extract shared patients' data
for i in range(len(df_omics)):
df_omics[i] = df_omics[i].loc[patients_shared, :].sort_index()
df_label = df_label.loc[patients_shared, :].sort_index()
if not df_clin is None:
df_clin = df_clin.loc[patients_shared, :].sort_index()
return df_omics, df_label, df_clin
# api
def read_dataset(args):
# 1. read raw dataset
# (1) read omics dataset
df_omics = read_omics(args)
# (2) read label
df_label = read_label(args)
# (3) read clinical feature
df_clin = read_clin(args)
# 2. process
df_omics, df_label, df_clin = process(df_omics, df_label, df_clin)
# 3. return clean dataset
return df_omics, df_label, df_clin