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Multi-Omics Causal Mediation Analysis
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Causal mediation analysis

The difficulty of mediation analysis in omics data
Overview of high-dimensional mediation analysis
Penalization-based method: HIMA (lab session)

N\

ection on Statistics in
Genomics and Genetics




Causation vs. Association

* Causal inference is an essential component for the discovery of disease mechanism.
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Causation vs. Association

* To claim causation, we could do randomized experiment or control all confounding variables.
* If we control for age, each group would have the same outcome, regardless of treatment.
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Mediation Effect

Mediation analysis: to further explore the mechanism behind the causation

Causal mediation effect:

* Exposure has a causal effect on the mediator

* Mediator has a causal effect on the outcome conditional on the exposure

Example

* Genetic variant leads different expression level which may increase the risk of

disease.
Gene expression

Outcome Y

\ 4

Exposure X

Genetic variant Disease risk
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Causal Mediation Analysis In Omics Studies

* Causal mediation analysis seeks to investigate the intermediate
mechanism through an exposure on the outcome of interest.

* Rising interest in omics studies to 1identify the mechanism of
molecular-level traits
* E.g. DNA —» RNA - Protein — outcome

* Mediation analysis in omics studies is challenging:
* High-dimensional mediators — 1dentifiability problem
* Composite null hypothesis - weak power
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Some Applications

General setting: One exposure — multiple mediators — one outcome

* Environment - DNA Methylation — Outcome

* E.g. Normative Aging Study (Bind et al., 2014 Epigenetics; Zhang et al., 2016 Bioinformatics; Liu et al., 2022 JASA)
Prostate Cancer (Dai et al., 2022 JASA)
Atherosclerosis (Song et al., 2020 Biometrics; Clark-Boucher et al., 2023 medRxiv)

* Also known as epigenome-wide mediation analysis
* Transcriptomics
*  Methylation

* Proteomics

I H |

* microRNAs — Gene expression — Outcome
* E.g. Glioblastoma (Huang et al., 2014 AOAS; w

Huang and Pan, 2016 Biometrics)

THRIN | |
Brain cancer (Loh et al., 2020 Biometrics)

- miRNA |
* Methylation “ b I '
* Others " SNPs | TP T E M
* E.g. Air Pollution (Inoue et al., 2020 JASA) G/E Y
Neuroimaging (Chén et al., 2018 Curr. Environ. Health Rep.;
Zhao et al., 2021 CSDA)
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Causal Mediation Model

Two linear regressions method proposed by Baron and Kenny, 1986 J Pers Soc Psychol
e Model X > M)M = Ca. + Xay + €y

(Model M - Y) Y = CB¢ + X0 + MByy + €y, where ey~N(0,0%) and €yy~N (0, 0%)

Since Y = Cﬁc + X6 +M,BM +EY
= C,BC + X0 + (CC(C +XC¥X + EM)ﬁM + €y
= Cﬁc + X0 + CCZC'BM +XC(X’BM + El*/

Direct effect is 8, and indirect effect (mediation effect) can be expressed as a xSy

Total effect y = 6+ axBy

Confounder C
%' ﬂM
EXpOSUI'C X > Outcome Y \i Section on Statistics in
6 ASAll Genomics and Genetics




High-Dimensional Mediation Analysis

* Challenge 1: High-dimensional mediators (M; . _M,) Mediator M,
* ModelM -»Y)Y =CBc +XO0+2;MiBy;+ey “x Mediator M, M
* When the number of mediators (p) 1s much greater than \
Exposure X »I Outcome Y

the sample size (N), fy, ; are not estimable.

* Identification assumptions could be easily violated after dimension reduction (Huang and Pan, 2016 Biometrics)

* Challenge 2: Composite null hypothesis (Hy: ayfy = 0)

» Traditional hypothesis tests are underpowered for testing composite null hypothesis. (Liu et al., 2022 JASA)
E.g. Sobel’s test and joint significant test (MaxP)
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Four Identification Assumptions

[
[
[
[
(

A1]Y(x) I X|C: no unmeasured confounding for the association of Y and X

]
A2]Y(x,m) [IM|(X, C): no unmeasured confounding for the association of Y and M given X
]

A3] M(x) ][] X|C: no unmeasured confounding for the association of M and X
A4]Y(x,m) [ M(x™)|C: no X-induced confounder for the M-Y association

cross-world assumption)

Mediator M

Exposure X

>

Outcome Y

=

\ U (Al)

C(A4)

A 4

Mediator M

Exposure X

N

Outcome Y

\ 4

Since the causal ordering of mediators is unknown, it is
hard to identify causal effect through the single mediator.
(Clark-Boucher et al., 2023 medRxiv

VanderWeele and Vansteelandt, 2014 Epidemiologic methods ASA"I.
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Overview Of High-Dimensional Mediation Analysis

First category: Mediation methods based on dimension reduction or mediator screening

Methods

Test Statistics

Null Distribution

correlation-based method
Huang-Pan method

causal inference test (CIT)

direction of mediation

MCP-subset

MCP-subset based on Westfall-Young

MCP-subset based on multivariate

HDMA
gHMA*

global test + ScreenMin®

Pmax
marginal and component-wise ME based on PCA

Pmax
PCA-based
Pmax
Pmax

Pl“dX

Pmax

ACAT combining gHMA-L and gHMA-NL

Ppin followed by Pyax

Second category: Mediation methods accounting for the composite nature of the null

Methods
JTV-comp*

JT-comp
DACT

JS-mixture

Test Statistics

mixture of multiple-mediator based P value without
estimating the proportions

mixture of single-mediator based P value without
estimating the proportions

mixture of single-mediator based P value with estimated
proportion

mixture of single-mediator based P value with estimated
proportion

Third category: Penalization-based mediation regression methods and Bayesian mediation methods

permutation

Monte Carlo (normal-based or
bootstrapping)

permutation

bootstrapping

screening followed by multiple
comparison procedure
screening followed by multiple
comparison procedure
screening followed by multiple
comparison procedure
screening followed by debiased estimation
screening followed by multiple
comparison procedure
screening followed by multiple
comparison procedure

Null Distribution
composite null

composite null
composite null

composite null

Methods Prior Effects Assumptions Optimization Procedure

pathway Lasso penalization based method ADMM

HIMA [ screening followed by minimax concave

penalty estimation
BAMA spike-and-slab prior MCMC
BAMA with joint priors Gaussian mixture prior and, product threshold Gaussian ~ MCMC
prior
BAMA with joint priors considering correlation the Potts prior and logistic normal prior MCMC

among mediators

Zeng et al., 2021 Computational and structural biotechnology journal

Popular methods

*Lab session

ASA"I.
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High-Dimensional Mediation Analysis (HIMA)

Bioinformatics

* The most user-friendly tools for
high-dimensional mediation analysis

Bioinformatics, 32(20), 2016, 3150-3154
doi: 10.1093/bioinformatics/btw351

Advance Access Publication Date: 29 June 2016
Volume 32, Issue 20 0ng|na| Paper

October 2016 Supported mediator types:
* Epigenetics
* Transcriptomics

Genetics and population analysis

Estimating and testing high-dimensional e Proteomics
mediation effects in epigenetic studies e Metabolomics
Haixiang Zhang', Yinan Zheng? Zhou Zhang?, Tao Gao?, Brian Joyce?, e Microbiome

Grace Yoon?, Wei Zhang?, Joel Schwartz®, Allan Just®, Elena Colicino?,
Pantel Vokonas®, Lihui Zhao?, Jinchi Lv’, Andrea Baccarelli®,

Lifang Hou? and Lei Liu%* Supported outcomes:
'Center for Applied Mathematics, Tianjin University, Tianjin 300072, China, “Department of Preventive Medicine, i Continuous
*Department of Statistics, Northwestern University, Chicago, IL 60611, USA, “Department of Environmental Health, .

Harvard University, Boston, MA 02115, USA, *Department of Preventive Medicine, Icahn School of Medicine at ° Blnal‘y

Mount Sinai, New York, NY 10029, USA, ®Veterans Affairs Boston Healthcare System and Boston University School
of Medicine, VA Normative Aging Study, Boston, MA 02118, USA and "Data Sciences and Operations Department,
University of Southern California, Los Angeles, CA 90089, USA

 Count
Survival

*To whom correspondence should be addressed.
Associate Editor: Oliver Stegle

Received on December 31, 2015; revised on May 5, 2016; accepted on May 24, 2016
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High-Dimensional Mediation Analysis (HIMA)

* HIMA assumes that the true mediators are sparse and applied Sure independence screening and
penalty regression to reduce the dimensionality.

* Workflow
1. Sure independence screening to identify those mediators with large absolute [
2. Penalty regression: Minimax concave penalty for variable selection
3. Joint significance test (MaxP) of mediator effect (p-value of ay and Sy)
Traxp = max(pa, pﬂ)
4. Control the family wise error rate (Bonferroni)

Mediator 1 (Model X- M)

* Ml =CC¥C’1 +XC(X’1+EM1

Mediator d

d Md = Cacld +XaX’d+EMd
(Model M - Y)
Outcome Y e Y =Cf¢ +X8+M1:BM,1+"°+Md,BM,d+EY

\ 4

Exposure X

Section on Statistics in 1 3
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TCGA Glioblastoma Multiforme

* 469 patients of glioblastoma multiforme have complete genomic data on gene expression (UNC
AgilentG4502A-07) archived in The Cancer Genome Atlas (TCGA).

* Chemotherapy have been reported to be associated with survival of cancer patients.

* Hypothesis: chemotherapy affects survival outcome mainly through its influence on gene
expression levels

Exposure (X): chemotherapy (Yes/No)
Mediator (M): gene expression (17450 genes)
Outcome (Y): dichotomous 1-year survival status

Gene expression

Confounders (C) . Age Gender Chemotherapy »| 1-year survival status
* b
alpha beta gamma alpha*beta % total effect Bonferroni.p BH.FDR
(Total effect) (Mediation effect)
DHRS12 0.2270880 -0.3282940 1.517597 -0.0745516 -4.9124789 0.0202180 0.0067547
NDUFA7 0.1575399 1.0372184 1.517597 0.1634033 10.7672359 0.0086816 0.0024884
OR52R1 -0.1427211 0.0156191 1.517597 -0.0022292 -0.1468885 0.3949076 0.0987269
PIGS -0.1480009 0.5642783 1.517597 -0.0835137 -5.5030204 0.0202642 0.0067547

To understand the biological mechanism across multi-omics, you can also try different exposure.
E. £. methylation and miRNA AS A‘ll. Section on Statistics in 1 4
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Single-cell Multi-Omics Analysis
1. Bulk vs. Single-Cell

2. Single-Cell multi-omics data and integration methods

3. Integrated analysis: Seurat 4.0 (lab session)

N\
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From Bulk To Single-Cell

Bulk RNA-Seq Single-Cell level
CD4 T cell

Dendritic cell

B cell CD8 T cell

o Bulk Expression change Single-Cell possibility 1 Single-Cell possibility 2
. Increase in: Increase in:
— : :
e — Increase 0O0®O O
" —
g _=
) E—— Decrease in: Decrease in:
e Decrease
2 C0@®O O
e — No change in: Increase in:
— No change O ‘ ‘ O Degease n:
m— '
S ————
—

Control group Treatment group
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Heterogeneity And Rarity

* Understanding disease machenism is challenging because of heterogeneity and rarity of target cells.

 E.g. HIV cells < 0.1% (Collora et al., 2022 Immunity)

Bulk data

Single-Cell data

Heterogeneity

/

Analogy from Ya-Chi Ho’s talk
Section on Statistics in 1 7
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Single-Cell Multi-Omics Data

scMethyl-HiC (2019)
snm3C-seq (2019)

scCAT-seq (2019)

ORCA (2019) Combined ATAC-RNA-seq (2019)

Accessible

chromatin Perturb-ATAC (2019)
\. ./ f—k Y  Nucleosome

Perturb-seq (2016)
CRISP-seq (2016

Chromosome q (2016)

conformation Nucleosome

occupancy
Gene ﬁ
expression
RNA sgRN

“ -
polymerase /. 5mC wﬁ / Cell surfaceO &teln

a m
DNA methylation N Perturbation \ E
& pitope
mRNA 0\

INI N\

Antibody barcode
scM&T-seq (2016) Whole cell RNA
scTrio-seq (2016) sci-CAR (2018) CITE-seq (2017 .
DR-seq (2015) scMT-seq (2016) scCOOL-seq (2017) scNMT-seq (2018) SNARE-seq (2019) -seq (2017 Surface protein
G&T-seq (2015) snmCT-seq (2018) scNOMe-seq (2017) scNOMeRe-seq (2019) Paired-seq (2019) ECCITE-seq (2019)

Zhu et al., 2020 Nature methods

Section on Statistics in
Genomics and Genetics
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Single-Cell (Multi-)Omics Methods

e CITE-Seq and 10X Multiome are the two frequently used methods in single-cell multi-omics.

Epigenome Transcriptome Proteome
Chromatin ,
et Nuclear RNA Whole cell RNA Protein abundance
scRNA-Seq v
snRNA-Seq v
scATAC-Seq v
CITE-Seq v v (surface)
ASAP-Seq v v (surface + intracellular)
10X Multiome v v
inCITE-Seq v V' (intranuclear)
DOGMA-Seq v v Vv (surface + intracellular)

* DOGMA = CITE-Seq + 10X Multiome

Section on Statistics in
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CITE-Seq

Example: CITE-Seq = scRNA-Seq + ADT

* scRNA: gene expression (Transcriptome)

e ADT: surface protein (Proteome) .
Zero expression because of "technical' dropouts

scRNA-Seq Antibody-Derived Tags (ADTs)

SLC35E2A 2 1

NADK 13 58

GNB1 — 29 29
RN A 109917 .1 [eal(D155-A0023 8 6
— Al (D112-A0024 12 16
% TMEM52 : CD47-A0026 57
Nl CFAP74 RSWCD438-A0029 65 84
NN /| 3918452 2 2 5 5
2B GABRD S 28 29 35
8 AL391845.1 *a’ 34 33 18
O PRKCZ <C 3 6 2

AL590822.2 . 309 140

PRKCZ-AS1 5 10

FAAP20

AL590822.1

Noisy but broad Targeted but narrow

v Large number of genes v/ Doesn’t have dropout problem

X High rate of false negative X Limited number of antibodies

Section on Statistics in 20
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Data Integration Strategy for Matched and Unmatched Data

Table 1 | Methods for matched data analysis

Table 2 | Methods for unmatched data analysis

Tool Data Model Additional notes Documentation Ref. Strategy Tool Data Feature  Algorithm Additional notes Documentation Ref.
type type matching
BREM-SC T+P Early This method models the observed data by https://github.com/ 35 Grouﬁ' Stereoscope T+ST R Deconvolution '(I;!\is pgethod as.fsumes ne%ati\;e binor:_i;l T hlttps:///github,com/ 53
integration, multinomial distributions and assumes data tarot0410/BREMSC Wiy e utnt)nrs O f?.er‘es an l:ots:atistwl glentia AMEEAG e
probabilistic  from both modalities to be generated in a tg:::n?lg Li]e: SIICIENCIES DEWECR IO
modelling cluster-specific manner 9
MAESTRO T+C R CCA +MNN This method implements ChlP-seq data-based TF  https://github.com/ e
scAl T+C  Early scAliteratively updates a regularized matrix https://github.com/ * enrichment score calculators to define core TFsin  liulab-dfci/MAESTRO
integration, factorization model to obtain an optimal common  sgjin/scAl each cell-type cluster
latentspace cell-loading matrix across two modalities : . .
modelling Comon STvEA MI+ET R MNN This method also provides aframework to transfer  https://github.com/ 4
features cell-type annotations from one modality to another Camaralab/STvEA
. . . 38
e Vet IEnat:% ration xof:uanf:xooriﬁ:lvi ?;?)E;]:;?:n?tehta::(l?rk ET;EZ,{;?&%J: Aczom/ Clonealign T+D R Variational This method assumes correlation between DNA  https://github.com/ <
latent spacé to gnabpl)e the integrgtion of different data types Sy SO T e o e kileranrlc_ Bpe
modelling (count versus binary) el S Sodooaal L
TotalVI T+P Early This method uses a variational autoencoder https://github.com/ "" ) L & ChaEae Lhis metILod ic;enti;iﬁ?‘anchor cellj ble_:-t.wee;': httgs:l//g/ithub.com/ )
: . atasets based on across modalities; these ~ satijalab/seurat
integration,  framework built on scVI. In this method, the protein  YoseflLab/scvi-tools anchor cells serve as a bridge for matching !
latentspace measurements are modelled with a negative . . L . -
modelling el Sk I e e A en i e LIGER T+M, R iNMF The relative contribution of dataset-.spemﬁc https://github.com/ 2
e ey puey T+C factors and shared factors is determined by a welch-lab/liger
9J hyperparameter A, which can be used to fine-tune
CiteFuse T+P  Late The similarity measurement for protein data https://github.com/ Z the integration results
integration, Is bas_e(! e proportionality coefficient and SydneyBioX/CiteFuse Aligning  MAGAN MI+T R GAN This method identifies cell-to-cell correspondence  https://github.com/ 6
latentspace  the similarity measurement for RNA data is spaces by adding a loss function defined by similarityof ~ KrishnaswamyLab/
modelling  constructed with the Pearson correlation cell matching; such loss function requires at least ~ MAGAN
Seurat40 T+P Late Computes aweighted average cell affinitymatrix ~ https://github.com/ i some shared features between two datasets
integration,  from modality-specific affinity matrices. The satijalab/seurat MATCHER  T+C  NR Manifold This method assumes 1D structure (pseudotime)  https://github.com/ &
latentspace  weights are computed to reflect the predictive alignment with a pre-specified direction jw156605/MATCHER
modelling '(;‘ff?"“gt"?;‘h‘f’“h'"; Celif ll?cal neighbourhood MMD-MA  T+M NR MMD In addition to the MMD loss, the loss function https:/bitbucketorg/  ©
etined within each modality also has a distortion loss and a penalty to ensure noblelab/2019_
BREM-SC, Bayesian random effects mixture model-single cell; C, chromatin accessibility; MOFA, multi-omics factor analysis; the dimensionality and orthogonality of each mmd_wabi/src/
P, proteome; scAl, single-cell aggregation and integration; scVI, single-cell variational inference; T, transcriptome. projection master/
UnionCom T+M NR GUMA The algorithm generalizes the GUMA method https://github. &
to achieve soft matching between datasets, com/caokail073/
P 1 . : T4 enabling matching with different numbers of cells UnionCom
atChed data ) dlfferent mOdalltle S WETC prOﬁled SCoTt T+C NR GWOT A late integration method in which a similarity https://github.com/ £t
matrix is constructed by each modality separately, rsinghlab/SCOT

from the same cell

after which probabilistic transportation between
datasets is achieved by GWOT

C, chromatin accessibility; CCA, canonical correlation analysis; ChIP-seq, chromatin immunoprecipitation followed by sequencing; D, DNA; ET, simultaneous
epitope and transcriptome; GAN, generative adversarial networks; GUMA, generalized unsupervised manifold alignment; GWOT, Gromov-Wasserstein optimal
transport; INMF, integrative non-negative matrix factorization; M, methylome; MI, multiplexed immunohistochemistry; MMD, maximum mean discrepancy; MNN,
mutual nearest neighbours; NR, not required; R, required; SNN, shared nearest neighbours; ST, spatial transcriptome; T, transcriptome; TF, transcription factor.

Unmatched data: different modalities were profiled
from different cells

Section on Statistics in
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Seurat 4.0

Cell

Integrated analysis of multimodal single-cell data

Graphical abstract

Single-cell multimodal
data technologies

CITE-seq

AN
W W W T
= AAAA
AL

Surtace proten  Gees sapoesson

10x mumome, SHARE-saq

"‘ ' 4 'I ' NS
N e
A1) 1 D AA N

Y

Open chromatn  Gere expression

ASAP-saq

D NN] ]
. 1)) "

1)

Surtsce proten Open chromatin

Weighted nearest neighbors

Modality weights

S

Multimodal reference atlas

VNN

scRNA query mapping

Nappad query , o ,
. e

Rebaerar -
1

Annctaes query

Authors

Yuhan Hao, Stephanie Hao,

Erica Andersen-Nissen, ...,
Raphael Gottardo, Peter Smibert,
Rahul Satija

Correspondence

rsatija@nygenome.org (R.S.),
smibertp@gmail.com (P.S.)

In brief

A framework that allows for the
integration of multiple data types using
single cells is applied to understand
distinct immune cell states, previously
unidentified immune populations, and to
interpret immune responses to
vaccinations.

e Introduce to WNN
e Hands-on CITE-Seq analysis

* Omics vs. Multi-Omics analysis

Weighted Nearest Neighbor Analysis

 Parallele intergration analysis

* An unsupervised framework to learn
the relative utility of each data type
in each cell, enabling an integrative
analysis of multiple modalities.

Section on Statistics in
Genomics and Genetics
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Weighted Nearest Neighbor Analysis (WNN)

1. Constructing independent k-nearest neighbor (KNN) graphs for each modality

Clustering based on RNA data
2. Performing within and across-modality prediction

3. Calculating cell-specific modality weights based on the relative accuracy

. Nl ® 0
of each modality | s .
ERI o
® 5
4. Calculating a WNN graph
4
10_Clustering based on RNA + ADT data 15 -10 maUMA-gJ 0 5

Clustering based on ADT data

[¢)]
L

wnnUMAP 2
(e )

0000 O
a b wON-2O0O
adtUMAP_2
eee0o0o0o0
apbwWN-=2O0

-10

-10 5 0 5
wnnUMAP_1




Case I: Protein Is

Than RNA

20

10 1

UMAP_2

-10 1

15 1

10 -
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RNA
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-
o
1

Predict cell from
RNA neighbors

—>

()
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@ Target cell
©® KNN (RNA) 0+

10

Transcriptome (Predicted)

(4]
1

10 & 0 5 10 0 5 10 15 20
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Protein N
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[}
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CD14 Mono .3 .
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Case II: Protein Is

Than RNA

UMAP_2

UMAP_2

@ Target cell RNA

® K-nearest neighbors

.....

-10 5 0 5
UMAP_1

@ Target cell Protein
® K-nearest neighbors

CD8T
b

ch4T

|

Measured CD8 protein

Predicting protein from RNA

Al
R

w

Measured CD8 protein
n

0 1 2 3 4
Predicted CD8 (from RNA neighbors)

Predicting protein from protein

Predicted CD8 (from protein neighbors)

Target cell: CD8 T

10 1

UMAP_2

WNN

pBC

ASA"I.
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Modality Weight From WNN

Median Modality Weight

RNA modality weight o D S K
1.00 - R ; '
ge cos 7 I
14+ Mono
0754 - | CD16+ Mono il
"} CD34+ CD8- NK -
- cD8T CD8+ NK --
0501 % o B
.. Eryth
Memory CD4 T CD16 Mono
0ns ] Mk CD56+ NK
(=] NalveCD4 T DC
= NK d
1 CD14 Mono
0.00 4 it
CD34+

Qo
Mouse

erytr [

>
aa

CASE I: High RNA weight & low protein weight
Case II: Low RNA weight & high protein weight

) ) ) ASA' Section on Statistics in 26
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References For Causal Mediation Analysis

* Bind et al. (2014). Air pollution and gene-specific methylation in the Normative Aging Study: association, effect
modification, and mediation analysis. Epigenetics, 9(3), 448-458.

* Zhang et al. (2016). Estimating and testing high-dimensional mediation effects in epigenetic
studies. Bioinformatics, 32(20), 3150-3154.

* Liuetal. (2022). Large-scale hypothesis testing for causal mediation effects with applications in genome-wide epigenetic
studies. Journal of the American Statistical Association, 117(537), 67-81.

* Dai et al. (2022). A multiple-testing procedure for high-dimensional mediation hypotheses. Journal of the American
Statistical Association, 117(537), 198-213.

* Song et al. (2020). Bayesian shrinkage estimation of high dimensional causal mediation effects in omics
studies. Biometrics, 76(3), 700-710.

* Clark-Boucher et al. (2023). Methods for Mediation Analysis with High-Dimensional DNA Methylation Data: Possible
Choices and Comparison. medRxiv, 2023-02.

* Huang et al. (2014). Joint analysis of SNP and gene expression data in genetic association studies of complex diseases. The
Annals of Applied Statistics 8, 352—-376.

* Huang and Pan (2016). Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous
mediators. Biometrics, 72(2), 402-413.

* Loh et al. (2022). Nonlinear mediation analysis with high-dimensional mediators whose causal structure is unknown.
Biometrics, 78(1), 46-59.

* Liuetal. (2022). Large-scale hypothesis testing for causal mediation effects with applications in genome-wide epigenetic
studies. Journal of the American Statistical Association, 117(537), 67-81.

ASA'[ Section on Statistics in

Genomics and Genetics



References For Causal Mediation Analysis

Inoue et al. (2020). Air pollution and adverse pregnancy and birth outcomes: mediation analysis using metabolomic
profiles. Current environmental health reports, 7, 231-242.

Chén et al. (2018). High-dimensional multivariate mediation with application to neuroimaging data. Biostatistics, 19(2),
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analysis, 142, 106835.

Fairchild and MacKinnon (2009). A general model for testing mediation and moderation effects. Prevention science, 10,
87-99.

Baron and Kenny (1986). The moderator—mediator variable distinction in social psychological research: Conceptual,
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VanderWeele and Vansteelandt (2014). Mediation analysis with multiple mediators. Epidemiologic methods, 2(1), 95-115.

Zeng et al. (2021). Statistical methods for mediation analysis in the era of high-throughput genomics: current successes and
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