Lecture 4 Multi-Omics Causal Mediation Analysis and Single-Cell Multi-Omics Analysis

April 20, 2023

Instructor: Rick Chang

Outline

Multi-Omics Causal Mediation Analysis

- 1. Causal mediation analysis
- 2. The difficulty of mediation analysis in omics data
- 3. Overview of high-dimensional mediation analysis
- 4. Penalization-based method: HIMA (lab session)

Single-Cell Multi-Omics Analysis

- 1. Bulk vs. Single-Cell
- 2. Single-Cell multi-omics data and integration methods
- 3. Integrated analysis: Seurat 4.0 (lab session)

Causation vs. Association

• Causal inference is an essential component for the discovery of disease mechanism.

Exposure X ·····> Outcome Y

Causation vs. Association

- To claim causation, we could do randomized experiment or control all confounding variables.
- If we control for age, each group would have the same outcome, regardless of treatment.

Group A - older

Health outcome

Mediation Effect

<u>Mediation analysis</u>: to further explore the mechanism behind the causation

Causal mediation effect:

- Exposure has a causal effect on the mediator
- Mediator has a causal effect on the outcome conditional on the exposure <u>Example</u>
- Genetic variant leads different expression level which may increase the risk of disease.

Causal Mediation Analysis In Omics Studies

- Causal mediation analysis seeks to investigate the intermediate mechanism through an exposure on the outcome of interest.
- Rising interest in omics studies to identify the mechanism of molecular-level traits
 - E.g. DNA \rightarrow RNA \rightarrow Protein \rightarrow outcome
- Mediation analysis in omics studies is challenging:
 - High-dimensional mediators \rightarrow identifiability problem
 - Composite null hypothesis \rightarrow weak power

Some Applications

General setting: One exposure \rightarrow multiple mediators \rightarrow one outcome

- Environment \rightarrow DNA Methylation \rightarrow Outcome
 - E.g. Normative Aging Study (Bind et al., 2014 Epigenetics; Zhang et al., 2016 Bioinformatics; Liu et al., 2022 JASA) Prostate Cancer (Dai et al., 2022 JASA) Atherosclerosis (Song et al., 2020 Biometrics; Clark-Boucher et al., 2023 medRxiv)
 - Also known as epigenome-wide mediation analysis
- microRNAs \rightarrow Gene expression \rightarrow Outcome
 - E.g. Glioblastoma (Huang et al., 2014 AOAS; Huang and Pan, 2016 Biometrics) Brain cancer (Loh et al., 2020 Biometrics)
- Others
 - E.g. Air Pollution (Inoue et al., 2020 JASA) Neuroimaging (Chén et al., 2018 Curr. Environ. Health Rep.; Zhao et al., 2021 CSDA)

Causal Mediation Model

Two linear regressions method proposed by Baron and Kenny, 1986 J Pers Soc Psychol

- (Model X \rightarrow M) $M = C\alpha_C + X\alpha_X + \epsilon_M$
- (Model M \rightarrow Y) $Y = C\beta_C + X\theta + M\beta_M + \epsilon_Y$, where $\epsilon_Y \sim N(0, \sigma_Y^2)$ and $\epsilon_M \sim N(0, \sigma_M^2)$

• Since
$$Y = C\beta_C + X\theta + M\beta_M + \epsilon_Y$$

= $C\beta_C + X\theta + (C\alpha_C + X\alpha_X + \epsilon_M)\beta_M + \epsilon_Y$
= $C\beta_C + X\theta + C\alpha_C\beta_M + X\alpha_X\beta_M + \epsilon_Y^*$

- Direct effect is θ , and indirect effect (mediation effect) can be expressed as $\alpha_X \beta_M$
- Total effect $\gamma = \theta + \alpha_X \beta_M$

High-Dimensional Mediation Analysis

- Challenge 1: High-dimensional mediators (M_{1,...,} M_p)
 - (Model M \rightarrow Y) Y = $C\beta_C + X\theta + \sum_j M_j\beta_{M,j} + \epsilon_Y$
 - When the number of mediators (p) is much greater than the sample size (N), $\beta_{M,j}$ are not estimable.

- Identification assumptions could be easily violated after dimension reduction (Huang and Pan, 2016 Biometrics)
- Challenge 2: Composite null hypothesis (H₀: $\alpha_X \beta_M = 0$)
 - Traditional hypothesis tests are <u>underpowered</u> for testing composite null hypothesis. (Liu et al., 2022 JASA) E.g. Sobel's test and joint significant test (MaxP)

Four Identification Assumptions

- [A1] $Y(x) \coprod X | C$: no unmeasured confounding for the association of Y and X
- [A2] $Y(x, m) \coprod M | (X, C)$: no unmeasured confounding for the association of Y and M given X
- [A3] $M(x) \coprod X | C$: no unmeasured confounding for the association of **M** and X
- [A4] *Y*(*x*, *m*) ∐ *M*(*x*^{*})|*C*: no X-induced confounder for the M-Y association (cross-world assumption)

Overview Of High-Dimensional Mediation Analysis

First category : Mediation methods based on din Methods	mension reduction or mediator screening Test Statistics	Null Distribution	Popular methods
correlation-based method	Pmax	permutation	
Huang-Pan method	marginal and component-wise ME based on PCA	Monte Carlo (normal-based or	
0	0	bootstrapping)	
causal inference test (CIT)	P _{max}	permutation	
direction of mediation	PCA-based	bootstrapping	
MCP-subset	P _{max}	screening followed by multiple	
		comparison procedure	
MCP-subset based on Westfall-Young	P _{max}	screening followed by multiple	
		comparison procedure	
MCP-subset based on multivariate	P _{max}	screening followed by multiple	
		comparison procedure	
HDMA	P _{max}	screening followed by debiased estimation	
gHMA [#]	ACAT combining gHMA-L and gHMA-NL	screening followed by multiple	
		comparison procedure	
global test + ScreenMin [#]	P_{\min} followed by P_{\max}	screening followed by multiple	
	·····	comparison procedure	
Second category: Mediation methods accounting	ng for the composite nature of the null		
Methods	Test Statistics	Null Distribution	
JTV-comp [#]	mixture of multiple-mediator based P value without	composite null	
	estimating the proportions		
JT-comp	mixture of single-mediator based P value without	composite null	
	estimating the proportions		
DACT	mixture of single-mediator based <i>P</i> value with estimated	composite null	
	proportion		
JS-mixture	mixture of single-mediator based <i>P</i> value with estimated	composite null	
	proportion		
Third category: Penalization-based mediation r	egression methods and Bayesian mediation methods		
Methods	Prior Effects Assumptions	Optimization Procedure	
pathway Lasso	penalization based method	ADMM	
HIMA	P _{max}	screening followed by minimax concave	*I ab session
		penalty estimation	
BAMA	spike-and-slab prior	МСМС	
BAMA with joint priors	Gaussian mixture prior and, product threshold Gaussian	MCMC	
	prior		
BAMA with joint priors considering correlation	the Potts prior and logistic normal prior	MCMC	
among mediators			

Zeng et al., 2021 Computational and structural biotechnology journal

High-Dimensional Mediation Analysis (HIMA)

Volume 32, Issue 20 October 2016

Bioinformatics, 32(20), 2016, 3150–3154 doi: 10.1093/bioinformatics/btw351 Advance Access Publication Date: 29 June 2016 Original Paper

Genetics and population analysis

Estimating and testing high-dimensional mediation effects in epigenetic studies

Haixiang Zhang¹, Yinan Zheng², Zhou Zhang², Tao Gao², Brian Joyce², Grace Yoon³, Wei Zhang², Joel Schwartz⁴, Allan Just⁵, Elena Colicino⁴, Pantel Vokonas⁶, Lihui Zhao², Jinchi Lv⁷, Andrea Baccarelli⁴, Lifang Hou² and Lei Liu^{2,*}

¹Center for Applied Mathematics, Tianjin University, Tianjin 300072, China, ²Department of Preventive Medicine, ³Department of Statistics, Northwestern University, Chicago, IL 60611, USA, ⁴Department of Environmental Health, Harvard University, Boston, MA 02115, USA, ⁵Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, ⁶Veterans Affairs Boston Healthcare System and Boston University School of Medicine, VA Normative Aging Study, Boston, MA 02118, USA and ⁷Data Sciences and Operations Department, University of Southern California, Los Angeles, CA 90089, USA

*To whom correspondence should be addressed. Associate Editor: Oliver Stegle

Received on December 31, 2015; revised on May 5, 2016; accepted on May 24, 2016

• The most user-friendly tools for high-dimensional mediation analysis

Supported mediator types:

- Epigenetics
- Transcriptomics
- Proteomics
- Metabolomics
- Microbiome

Supported outcomes:

- Continuous
- Binary
- Count
- Survival

High-Dimensional Mediation Analysis (HIMA)

- HIMA assumes that the true mediators are sparse and applied Sure independence screening and penalty regression to reduce the dimensionality.
- Workflow
 - Sure independence screening to identify those mediators with large absolute β_k
 - Penalty regression: Minimax concave penalty for variable selection 2.
 - Joint significance test (MaxP) of mediator effect (p-value of α_X and β_M) 3. $T_{MaxP} = \max(p_{\alpha}, p_{\beta})$
 - 4. Control the family wise error rate (Bonferroni)

SIS: Fan and Lv, 2008 JRSS B; MCP: Zhang, 2010 Ann. Stat ASAU Section on Statistics in Genomics and Genetics

TCGA Glioblastoma Multiforme

- 469 patients of glioblastoma multiforme have complete genomic data on gene expression (UNC AgilentG4502A-07) archived in The Cancer Genome Atlas (TCGA).
- Chemotherapy have been reported to be associated with survival of cancer patients.
- <u>Hypothesis</u>: chemotherapy affects survival outcome mainly through its influence on gene expression levels

Exposure (X): chemotherapy (Yes/No) Mediator (M): gene expression (17450 genes) Outcome (Y): dichotomous 1-year survival status Confounders (C): Age, Gender

	alpha	beta	gamma (Total effect)	alpha*beta	% total effect	Bonferroni.p	BH.FDR
DHRS12	0.2270880	-0.3282940	1.517597	-0.0745516	-4.9124789	0.0202180	0.0067547
NDUFA7	0.1575399	1.0372184	1.517597	0.1634033	10.7672359	0.0086816	0.0024884
OR52R1	-0.1427211	0.0156191	1.517597	-0.0022292	-0.1468885	0.3949076	0.0987269
PIGS	-0.1480009	0.5642783	1.517597	-0.0835137	-5.5030204	0.0202642	0.0067547

To understand the biological mechanism across multi-omics, you can also try different exposure. E.g. methylation and miRNA

Outline

Multi-Omics Causal Mediation Analysis

- 1. Causal mediation analysis
- 2. The difficulty of mediation analysis in omics data
- 3. Overview of high-dimensional mediation analysis
- 4. Penalization-based method: HIMA (lab session)

Single-cell Multi-Omics Analysis

- 1. Bulk vs. Single-Cell
- 2. Single-Cell multi-omics data and integration methods
- 3. Integrated analysis: Seurat 4.0 (lab session)

From Bulk To Single-Cell

Heterogeneity And Rarity

- Understanding disease machenism is challenging because of heterogeneity and rarity of target cells.
- E.g. HIV cells < 0.1% (Collora et al., 2022 Immunity)

Analogy from Ya-Chi Ho's talk

Section on Statistics in

Genomics and Genetics

Pan and Jia, 2021 Frontiers in Molecular Biosciences; Liu et al., 2019 Nature Communications; Collora et al., 2022 Immunity

Single-Cell Multi-Omics Data

Zhu et al., 2020 Nature methods

Single-Cell (Multi-)Omics Methods

• CITE-Seq and 10X Multiome are the two frequently used methods in single-cell multi-omics.

	Epigenome	Trans	criptome	Proteome
	Chromatin accessibility	Nuclear RNA	Whole cell RNA	Protein abundance
scRNA-Seq			\checkmark	
snRNA-Seq		\checkmark		
scATAC-Seq	\checkmark			
CITE-Seq			\checkmark	√ (surface)
ASAP-Seq	\checkmark			\checkmark (surface + intracellular)
10X Multiome	\checkmark	\checkmark		
inCITE-Seq		\checkmark		\checkmark (intranuclear)
DOGMA-Seq	\checkmark		\checkmark	$\sqrt{(\text{surface} + \text{intracellular})}$

• DOGMA = CITE-Seq + 10X Multiome

CITE-Seq

Example: CITE-Seq = scRNA-Seq + ADT

- scRNA: gene expression (Transcriptome)
- ADT: surface protein (Proteome)

Zero expression because of "technical" dropouts

scRNA-Seq

SLC35E2A														•	
NADK															
GNB1	1		6		2	1		2	1	1		1	2		2
AL109917.1															
CALML6															
TMEM52															
CFAP74															
AL391845.2															
GABRD															
AL391845.1															
PRKCZ															
AL590822.2															
PRKCZ-AS1															
FAAP20			1	3				1		1	1	1	2	1	
AL590822.1															

Noisy but broad

- \checkmark Large number of genes
- X High rate of false negative

Antibody-Derived Tags (ADTs)

	CD86-A0006	2		1	1			2	1	1	2	1
	CD274-A0007	23	20	10	29	24	43	18	69	25	13	58
	CD270-A0020	39	45	39	40	41	31	30	27	33	29	29
0	CD155-A0023	7	6	4	13	4	4	1	4	4	8	6
	CD112-A0024	9	21	4	33	13	5	16	10	6	12	16
	CD47-A0026	166	140	118	66	82	102	113	107	146	57	125
Ď	CD48-A0029	73	66	54	33	136	127	101	55	111	65	84
5	CD40-A0031	2	1	4	8	3	5	3	2	3	5	5
5	CD154-A0032	23	40	19	92	20	54	27	28	24	29	35
III	CD52-A0033	55	33	18	31	18	40	33	34	33	18	37
2	CD3-A0034	7	1	2	3	2	5	4	3	6	2	2
1	CD8-A0046	2		2	142		14	64		309	140	1
	CD56-A0047	6	5	2	8	9	2	5	5	5	10	6
	CD19-A0050	1		1						1		
	CD33-A0052	4	4	1	1		1	5	2	1	5	2

Targeted but narrow

- \checkmark Doesn't have dropout problem
- X Limited number of antibodies

Data Integration Strategy for Matched and Unmatched Data

Table 1 Methods for matched data analysis

Additional notes Ref. Tool Data Model Documentation type BREM-SC T+P Early This method models the observed data by https://github.com/ multinomial distributions and assumes data tarot0410/BREMSC integration. probabilistic from both modalities to be generated in a modelling cluster-specific manner scAl T+C Early scAl iteratively updates a regularized matrix https://github.com/ factorization model to obtain an optimal common sgjin/scAl integration. latent space cell-loading matrix across two modalities modelling Early https://github.com/ MOFA+ T+C MOFA and MOFA+ were built on the framework integration, of group factor analysis but extend the model bioFAM/MOFA2 latent space to enable the integration of different data types modelling (count versus binary) Early TotalVI T + PThis method uses a variational autoencoder https://github.com/ integration, framework built on scVI. In this method, the protein YosefLab/scvi-tools measurements are modelled with a negative latent space binomial mixture distribution to account for modellina background reads T+P The similarity measurement for protein data https://github.com/ CiteFuse Late SydneyBioX/CiteFuse integration, is based on a proportionality coefficient and latent space the similarity measurement for RNA data is modellina constructed with the Pearson correlation Seurat 4.0 T+P Late Computes a weighted average cell affinity matrix https://github.com/ from modality-specific affinity matrices. The satijalab/seurat integration, latent space weights are computed to reflect the predictive modelling information within a cell's local neighbourhood defined within each modality

BREM-SC, Bayesian random effects mixture model-single cell; C, chromatin accessibility; MOFA, multi-omics factor analysis; P, proteome; scAI, single-cell aggregation and integration; scVI, single-cell variational inference; T, transcriptome.

Matched data: different modalities were profiled from the same cell

Unmatched data: different modalities were profiled from different cells

Table 2 | Methods for unmatched data analysis

S	trategy	Tool	Data type	Feature matching	Algorithm	Additional notes	Documentation	Ref.
C	iroup natching	Stereoscope	T + ST	R	Deconvolution	This method assumes negative binomial distributions of genes and tolerates differential gene capture efficiencies between two technologies	https://github.com/ almaan/stereoscope	53
		MAESTRO	T+C	R	CCA + MNN	This method implements ChIP-seq data-based TF enrichment score calculators to define core TFs in each cell-type cluster	https://github.com/ liulab-dfci/MAESTRO	49
C fe	omon eatures	STvEA	MI + ET	R	MNN	This method also provides a framework to transfer cell-type annotations from one modality to another	https://github.com/ CamaraLab/STvEA	54
		Clonealign	T+D	R	Variational Bayes	This method assumes correlation between DNA copy number and gene expression within the same region	https://github.com/ kieranrcampbell/ clonealign	56
		Seurat 3.0	T+C	R	CCA + SNN	This method identifies anchor cells between datasets based on SNN across modalities; these anchor cells serve as a bridge for matching	https://github.com/ satijalab/seurat	57
		LIGER	T + M, T + C	R	iNMF	The relative contribution of dataset-specific factors and shared factors is determined by a hyperparameter λ , which can be used to fine-tune the integration results	https://github.com/ welch-lab/liger	58
A	ligning paces	MAGAN	MI + T	R	GAN	This method identifies cell-to-cell correspondence by adding a loss function defined by similarity of cell matching; such loss function requires at least some shared features between two datasets	https://github.com/ KrishnaswamyLab/ MAGAN	60
		MATCHER	T+C	NR	Manifold alignment	This method assumes 1D structure (pseudotime) with a pre-specified direction	https://github.com/ jw156605/MATCHER	61
		MMD-MA	T+M	NR	MMD	In addition to the MMD loss, the loss function also has a distortion loss and a penalty to ensure the dimensionality and orthogonality of each projection	https://bitbucket.org/ noblelab/2019_ mmd_wabi/src/ master/	62
		UnionCom	T + M	NR	GUMA	The algorithm generalizes the GUMA method to achieve soft matching between datasets, enabling matching with different numbers of cells	https://github. com/caokai1073/ UnionCom	63
		SCOT	T+C	NR	GWOT	A late integration method in which a similarity matrix is constructed by each modality separately, after which probabilistic transportation between datasets is achieved by GWOT	https://github.com/ rsinghlab/SCOT	64

C, chromatin accessibility; CCA, canonical correlation analysis; ChIP-seq, chromatin immunoprecipitation followed by sequencing; D, DNA; ET, simultaneous epitope and transcriptome; GAN, generative adversarial networks; GUMA, generalized unsupervised manifold alignment; GWOT, Gromov-Wasserstein optimal transport; iNMF, integrative non-negative matrix factorization; M, methylome; MI, multiplexed immunohistochemistry; MMD, maximum mean discrepancy; MNN, mutual nearest neighbours; NR, not required; R, required; SNN, shared nearest neighbours; ST, spatial transcriptome; T, transcriptome; TF, transcription factor.

Miao et al., 2021 Nephrology ASAU Section on Statistics in Genomics and Genetics

Seurat 4.0

Resource

Cell

Integrated analysis of multimodal single-cell data

Graphical abstract

Authors

Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, ..., Raphael Gottardo, Peter Smibert, Rahul Satija

Correspondence

rsatija@nygenome.org (R.S.), smibertp@gmail.com (P.S.)

In brief

A framework that allows for the integration of multiple data types using single cells is applied to understand distinct immune cell states, previously unidentified immune populations, and to interpret immune responses to vaccinations.

• Introduce to WNN

- Hands-on CITE-Seq analysis
- Omics vs. Multi-Omics analysis

Weighted Nearest Neighbor Analysis

- Parallele intergration analysis
- An unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities.

Section on Statistics in

Genomics and Genetics

Weighted Nearest Neighbor Analysis (WNN)

- 1. Constructing independent k-nearest neighbor (KNN) graphs for each modality
- 2. Performing within and across-modality prediction
- 3. Calculating cell-specific modality weights based on the relative accuracy of each modality
- 4. Calculating a WNN graph

Case I: Protein Is Worse Than RNA

Case II: Protein Is better Than RNA

Modality Weight From WNN

https://www.youtube.com/watch?v=9MP2y3ZgD4M&ab_channel=AllenDiscoveryCenterforCellLineageTracing

Genomics and Genetics

References For Causal Mediation Analysis

- Bind et al. (2014). Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis. Epigenetics, 9(3), 448-458.
- Zhang et al. (2016). Estimating and testing high-dimensional mediation effects in epigenetic studies. Bioinformatics, 32(20), 3150-3154.
- Liu et al. (2022). Large-scale hypothesis testing for causal mediation effects with applications in genome-wide epigenetic studies. Journal of the American Statistical Association, 117(537), 67-81.
- Dai et al. (2022). A multiple-testing procedure for high-dimensional mediation hypotheses. Journal of the American Statistical Association, 117(537), 198-213.
- Song et al. (2020). Bayesian shrinkage estimation of high dimensional causal mediation effects in omics studies. Biometrics, 76(3), 700-710.
- Clark-Boucher et al. (2023). Methods for Mediation Analysis with High-Dimensional DNA Methylation Data: Possible Choices and Comparison. medRxiv, 2023-02.
- Huang et al. (2014). Joint analysis of SNP and gene expression data in genetic association studies of complex diseases. The Annals of Applied Statistics 8, 352–376.
- Huang and Pan (2016). Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators. Biometrics, 72(2), 402-413.
- Loh et al. (2022). Nonlinear mediation analysis with high-dimensional mediators whose causal structure is unknown. Biometrics, 78(1), 46-59.
- Liu et al. (2022). Large-scale hypothesis testing for causal mediation effects with applications in genome-wide epigenetic studies. Journal of the American Statistical Association, 117(537), 67-81.
 ASAL Section on Statistics in Genomics and Genetics

References For Causal Mediation Analysis

- Inoue et al. (2020). Air pollution and adverse pregnancy and birth outcomes: mediation analysis using metabolomic profiles. Current environmental health reports, 7, 231-242.
- Chén et al. (2018). High-dimensional multivariate mediation with application to neuroimaging data. Biostatistics, 19(2), 121-136.
- Zhao et al. (2020). Sparse principal component based high-dimensional mediation analysis. Computational statistics & data analysis, 142, 106835.
- Fairchild and MacKinnon (2009). A general model for testing mediation and moderation effects. Prevention science, 10, 87-99.
- Baron and Kenny (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
- VanderWeele and Vansteelandt (2014). Mediation analysis with multiple mediators. Epidemiologic methods, 2(1), 95-115.
- Zeng et al. (2021). Statistical methods for mediation analysis in the era of high-throughput genomics: current successes and future challenges. Computational and structural biotechnology journal, 19, 3209-3224.
- Dugourd et al. (2021). Causal integration of multi-omics data with prior knowledge to generate mechanistic hypotheses. Molecular systems biology, 17(1), e9730.
- Qin et al. (2019). Identifying multi-omics causers and causal pathways for complex traits. Frontiers in genetics, 10, 110.
- Kelly et al. (2022). A review of causal discovery methods for molecular network analysis. Molecular Genetics & Genomic Medicine, 10(10), e2055.

References For Single-Cell Multi-Omics

- Collora et al. (2022). Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones. Immunity, 55(6), 1013-1031.
- Pan and Jia (2021). Application of single-cell multi-omics in dissecting cancer cell plasticity and tumor heterogeneity. Frontiers in Molecular Biosciences, 8, 757024.
- Liu et al. (2019). Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nature communications, 10(1), 470.
- Zhu et al. (2020). Single-cell multimodal omics: the power of many. Nature methods, 17(1), 11-14.
- Miao et al. (2021). Multi-omics integration in the age of million single-cell data. Nature Reviews Nephrology, 17(11), 710-724.
- Hao et al. (2021). Integrated analysis of multimodal single-cell data. Cell, 184(13), 3573-3587.
- Adossa et al. (2021). Computational strategies for single-cell multi-omics integration. Computational and Structural Biotechnology Journal, 19, 2588-2596.
- Ma et al. (2020). Integrative methods and practical challenges for single-cell multi-omics. Trends in biotechnology, 38(9), 1007-1022.