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I. Introduction



Purpose/Goal

Single-Omics

* Heterogenous diseases states, Analysis Approaches

patient profiles

. _ Metabolite profiling
. Capturq unique pgtterns of sub- Mitabicliiiia . Pathway analysis
populatlons tO gulde treatment’ ............................................
understanding of individual’s . ¢ Proteome mining :
. i Protein expression profiling
disease Protein :  Post-translational modifications
.. .. PrOte.ome . i Structural proteomics
* Precision medicine (Protein, Cytokine) i Functional proteomics
: Protein-protein interactions, PPIs

.,
e, o
---------------------------------------------------------------

---------------------------------------------------------------------------------------

i Differentially expressed gene analysis (DEG)
(mRNA, rRNA, tRNA, & pathway/GSE analysis

tmRNA, rpiRNA, INRNA, i Network (Gene-Gene-Discase)
snRNA, SIRNA) --------------------------------------------------------------------------------------

Transcriptome

Genome (GWAS, MWAS)
(SNP/SNV, CNV, CNA, i Pathway analysis

CGls, Indels, Translocations) = Netwoik

----------------------------------------------------------

Vahabi & Michailidis, 2022
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One or more omics layers are
arranged, normalized, and scaled
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Multi-omic fingerprints detected by
MAUI are useful for a wide spectrum
of precision oncology applications

Cancer
subtype
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Drug
response
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Example: Breast Cancer

Molecular
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Data Integration Challenges for Multi-Omics

* Curse of dimensionality: small number of samples compared to the
large number of measurements

* Data heterogeneity: differences 1n scale, collection bias and noise 1n
cach data set

e Complexity of inter-omics variations: complementary nature of the
information provided by different types of data.

* Missing data: methods require data for matched subjects
* Can address with imputation to some extent

ASA' Section on Statistics in
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II. Review of Concepts:
Unsupervised Machine Learning
& Clustering



Review: Unsupervised Machine Learning

e 2 Common forms of UML

* Dimension Reduction
e Situations where p >> n (common in omics)

* Can a smaller number of features (e.g. 10) adequately represent all p (e.g. 1000
features)?

* Principal component analysis (PCA), factor analysis
* Visual Interpretations

* Clustering Methods
* Identify groups among set of objects
* Cluster samples (rows of X): identify distinct subgroups of disease
* Cluster features (columns of X): identify groups of similar genes

* Objects within same cluster should similar while objects in 2 separate clusters should
be different
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Unsupervised Learning: Goals for Multi-Omics

( Multi-omics data >

Disease subtyping and
° ClaSSIfy patient stratification %
* Disease, sample subtype
» Find meaningful patterns or groups/clusters within et I B
(“fingerprint™) P ' *
* Discover biomarkers/modules & $ ’*
* Prioritize genes associated with a disease wiype * Diease
* Find genes that are co-expressed T
* Co-expressed genes may have similar functions or ) 7 i f’
may be co-regulated § i U

* Clues into gene function

* Define outcomes for subtypes —
* Do these clusters help predict patient survival, and decision . (Y
treatment, prognosis, more \4

(Data-driven treatment

Zitnik et al., 2019
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* Grouping objects based on similarity within the group (internal) and
dissimilarity to the objects belonging to other groups (intra-cluster)

e Need:

* Proximity/Distance metric
* Criterion to evaluate clustering

* Algorithm to compute clustering
* Optimizing criterion function
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Distance/Proximity Metrics

Distance Equation Time Advantages Disadvantages Applications
Measure complexity
Euclidean o 5 O(n) Very common, easy to Sensitive to outliers [27,31].  K-means algorithm,
Distance Aoe = [Z(x,. -y )2] compute and works well Fuzzy c-means
i=1 with datasets with algorithm [38].
compact or isolated
clusters [27,31].
Average N 3 O(n) Better than Euclidean Variables contribute K-means algorithm
Distance e GZ(XI‘ - )2) distance [35] at handling independently to the
P outliers. measure of distance.
Redundant values could
dominate the similarity
between data points [37].
Weighted P ; O(n) The weight matrix allows Same as Average Distance. Fuzzy c-means
Euclidean (Zw,.(x, — ¥ ) to increase the effect of algorithm [38]
=1 more important data
points than less
important one [37].
Mahalanobis 4. — \/(X S x— )T O(3n) Mahalanobis is a data- It can be expensive in terms  Hyperellipsoidal
mah driven measure thatcan  of computation [33] clustering algorithm
ease the distance [30].
distortion caused by a
linear combination of
attributes [35].
Pearson Pearson(x, > immbimny) O(2n) *Results in accurate - Partitioning and
coefficient y) = W P/ i outcomes using the hierarchical
hierarchical single-link clustering
algorithm for high algorithms.

dimensional datasets.

*Points marked by asterisk are compiled based on this article’s experimental results.

Shirkhorshidi et al., 2015

doi:10.1371/journal.pone.0144059.t001
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TABLE III COMPARATIVE ANALYSIS OF K-MEANS,
HIERARCHICAL AND SELF ORGANIZATION MAP ALGORITHM

K-MEANS BASED AGGLOMERATIVE | SELF

DATA HIERARCHICAL ORGANIZATION
CLUSTERING ALGORITHM MAP

Partitioning Based Based on Based on neural
Method hierarchical tree network

Input: k, dataset,
randomly chosen k

Input randomly

Random input vector

. dataset from training dataset
centroids
Multidimensional
Objective: Objective: data is mapped by
Minimizing sum of Minimizing sum of competitive and
squared distance squared distance unsupervised
learning

Final clustering may
converge to local
optima

Final clustering may
converge to local
optima.

Final clustering may
converge to local
optima.

Time complexity:
O(n*k*d*i)

Where

n= no. of data points
k= no. of clusters

d= dimension of data
i= no. of iterations

Time complexity:
O(n’lgn)

Time complexity:
O(m>*1)

Where

m= dimensional
input vector

I=no of weight vector

Common Clustering Algorithms

ASA‘ll.

Kumar & Asger, 2015
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Axioms for “Good” Clustering

* Scale Invariance:

* Clustering algorithm should not modify its results when all distances between points
are scaled by the factor determined by a constant

* Consistency:

* Clustering results do not change if the distances within clusters decrease and/or the
distances between clusters increase

* Richness:

* Clustering function must be flexible enough to produce any arbitrary
partition/clustering of the input data set

 “Kleinberg proves the following theorem: For every n >= 2, there 1s no clustering
function f that satisfies scale invariance, richness, and consistency. [3]”

* Impossible for any clustering procedure to be able to satisfy all three axioms.
* Practical clustering algorithms must make trade-offs

Palacio-Nino & Berzal, 2019
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Clustering Challenges

* Defining distance metric
e Different data structures

* Identifying number (k) of clusters
* Assess clustering when truth 1s unknown




Internal Cluster Validation

* No ground truth labels

* Focus on:
* Cluster cohesion and separation
* Statistical analysis of the proximity matrix
* The dendrogram generated by hierarchical clustering algorithms

* Examples:
 Silhouette Coefficient, Calinski-Harabasz Index, Davies-Bouldin Index
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Silhouette Score

bi —Cll‘

e Definition: s(i) =
For object (subject) i
a=ave. dist of object i to other objects in same cluster (mean intra-cluster distance)

b=ave. dist of object i to other objects in closest neighboring cluster (mean nearest-cluster distance)
* Range: [-1, 1]

Visually inspect the similarities within clusters and differences across clusters

maX(ai R bi )

Assess how well-assigned each individual point is & how close each point in a cluster is
to points in the neighboring clusters

 1: ‘appropriate’ cluster; well-assigned; further away the cluster’s samples are from the neighboring
clusters samples

* 0: right at the inflection point between two clusters; sample is on or very close to the decision
boundary between two neighboring clusters

* -1: “inappropriate clustering”; assigned to wrong cluster

Global Silhouette Score: average of Silhouette values
* Describe the entire population’s performance with a single value

Disadvantage: can be extremely expensive to compute on all # points
* Compute the distance of i from all other n — 7 points for each i, complexity of O(n2).

ASA“l Section on Statistics in 1 7
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External Cluster Validation

* Requires ground “truth” labels

* Externally-provided information to evaluate the quality of the
clustering results

* External validation metrics are also useful when comparing the results
provided by different clustering algorithms

* Examples:

* Adjusted Rand index, Fowlkes-Mallows scores, Mutual information based
scores, Jaccard Index, Homogeneity, Completeness and V-measure

ASA“l Section on Statistics in
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Rand Index

e Similarity measure

* Compares all pairs of samples predicted © Number of Agreeing Pairs

and true clusterings RI = |
, Number of Pairs
* Range: [0, 1]

* 1: perfect match

. . RI - Expected RI
 Adjusted Rand Index: adjusted for ARI =
chance M&X(RI) - Expected RI

* Range: [0, 1]
* 0: Random labelling
* 1: Clusters 1dentical




[II. Multi-Omics Unsupervised
Clustering
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Joint Bayesian factor

PARADIGM Disease Subtyping
Disease Insights
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Bayesian
Legend

>
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Biomarker Prediction

Subramanian et al., 2020
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Recommended Methods

TABLE 2 Four scenarios with recommended methods

Scenarios

I. (Feature selection): The need to identify clinically relevant
disease subtypes and driving molecular signatures which
can be targeted for treatment

I1. (Mixed-type data): Large scale genomic data of mixed-
type in large consortia

II1. (Computational efficiency): Concern on the
computational resources and consumption of time

IV. (Knowledge integration): Leveraging the prior
knowledge

Required
characteristics for
method

Performing both sample
clustering and feature
selection

Integrating mixed type
of data

Computationally
efficient

Incorporating prior
information

Recommended methods

iCluster; iClusterPlus; iClusterBayes;
intNMF; IS-K means; CIMLR; PSDF

iClusterPlus; iClusterBayes; moCluster;
LRAcluster; MDI; SNF; CIMLR; rMKL-
LPP; PINS; PINSPlus

Spectrum; SNF; ab-SNF; NEMO; CIMLR;
rMKL-LPP

IS-K means; PARADIGM

Zhang et al., 2022
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Consensus Clustering

* Matrix per clustering algorithm ¢:

. Mi(]?) = 1 :sample i and j are clustered in
same subtype

. Ml.(]?) = 0 : otherwise

Subtype

Rl S Y ey
[ [~ ]

* Probability matrix represents how many | —,
times samples belonging to the same
subtype can be clustered together by
different multi-omics clustering methods

* Robust pairwise similarities for samples
across different multi-omics integrative
clustering algorithms

* Clustering on CM (hierarchical)

* Looking for:

* Perfect diagonal rectangle

* Input values are 0 and 1 only because all
algolrtlthms derived the same clustering
results

Matrix Subtype

T M cs1

08 Mcs2
0.6 CS3
04 CS4
02 CSh

0

e Ly et al., 2021
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IV. Methods Highlight: Similarity
Network Fusion (SNF)



SNF - Introduction

e Uses networks of samples as a basis for integration

e Various omics datasets (both in type and number)

e The fused network captures both shared and complementary information
from different data sources

e Insight into how informative each data type is to the observed similarity

between samples

Useful information even from a small number of samples

Robust to noise and data heterogeneity

Scales to a large number of genes

Efficiently identify subtypes among existing samples by clustering and

predict labels for new samples based on the constructed network

e Questions it can address:
e Samples' molecular/phenotypic profiles
e Subtyping and label prediction (sub-populations, drug response)

ASA'[ Section on Statistics in
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SNF - Introduction

Fused patient

d Original data b Patient similarity matrices C Patient similarity networks d Fusion iterations e similarity network
) Patients
mRNA expression
2 Q
= 12
Q2 =
s i, /
o © /
o
DNA methylation
[2]
- [2]
£ 5
(] -—
8. @

Q

O Patients Patient similarity:

Supported by all data

DNA methylation—based

mRNA-based

Wang et al., 2014
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Step 1: Patient Similarity Matrix, my

nn
0 W{l,n}
w1y |0 W2 n)
Winy | Wza}

W(,j) = exp (—

Graph: G=(V, E)

V — patients, 1-n

E: edges, weighted by similarity between patients, n x n
matrix (W)

Similarity/weights: scaled exponential similarity kernel

p?(x;, xj))
HEL, j3
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Step 2: Network Fusion

* Full, Normalized Kernel, P Iterate (2 data types) i
1 _ (2)
W(i)j) j i i C P{t+1} o S(l)XPt X(S(l)) :
. . . W(ik)’ . p@  _ (1) T
 P(i,j) = ZZk#lW(uk) P, = SOxPIx(s®)
= j=i |
2 Overall Status Matrix
 Sparse Kernel, Local Affinity, S . ple) — PO+
( . 2
W (i, .
o ( 1). jEN, |
o S(l,]) = ZkeNi W(ik) Multiple data sets:
. 1
_ 0 otherwise ¢ Py =

Y ken; Lien; SV (@ k)X (j, D% PF (k, 1)
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SNF — Downstream Analyses

* Network-clustering: disease subtyping
* Spectral clustering

* Use patient clusters/sub-types to test for associations with outcomes
* E.g. Cancer types, survival, drug response

* Identify common and complementary signals across data type
* Reduce noise by aggregating across multiple types of data

* Provide insight into the relative importance of each data source for
determining patient similarity
* Refine the understanding of the heterogeneity within each subtype

ASA“l Section on Statistics in
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Wang et al., 2014
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https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810

SNF — Applicable Data

* Matched data by patients
* N of omics datasets: multiple
* Types: Continuous, binary, and categorical

e Clinical:

* Such as microbiome and metabolomics data, questionnaires and functional
magnetic resonance 1maging, together with genomic, clinical and demographic
data

* Just requires: the data can be used to 1dentify similarity between patients

ASA'[ Section on Statistics in
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SNF — Assumptions & Considerations

Hyperparameters
Simulations show method not sensitive to different settings of hyperparameters

u : from calculating patient similarity networks (individual data types)
* Recommend setting u in the range of [0.3, 0.8]

K: number of clusters
e The rule of thumb for choosing parameter K: K = N/C
* N : number of patients

e C : number of clusters that is believed to be in the data
e If C is unknown, we usually set K = N/10

KNN implies local similarities are more reliable than remote ones

Distance/Similarity Metrics
* Euclidean for continuous data, Chi-squared for binary, categorical
 Others are possible (correlation, etc.)

Identifying number of clusters for subtyping with spectral clustering, recommend
eigengap

ASA'[ Section on Statistics in
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SNF — Assumptions & Considerations

e Outliers

* Missing data, imputation
 KNN, same K as in method
* Removal of patients with more than 20% missing data in a certain data type

 Normalization
. f _ f-E()
Jvar(f)

* f:any biological feature

* f: biological feature following normalization
* E(f): empirical mean of f

* Var(f): empirical variance of f

* Combining data types
* Normalized mutual information (NMI) to check for concordance of data types

ASA“l Section on Statistics in

Genomics and Genetics



SNF — Pros

* Flexible: Multiple omics types and multiple number of data sets

 Can integrate various gene-interaction data, such as physical interactions,
coexpression and colocalization data

* Provide insight into how informative each data type 1s to observed
similarities of samples

* Small number of samples
* Robust to noise, data heterogeneity

* Computationally efficient
* Guaranteed to converge

* Number of iterations > 20 always enough to converge
* Scales to large numbers of features

ASA'[ Section on Statistics in
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SNF — Cons

* Requires matched samples, no missingness

* Does not distinguish between data types = false fusion

* Uses Euclidean distance to calculate the similarity matrices between the
samples

* May be incapable of capturing the data’s unique structure

ASA“l Section on Statistics in
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SNF - Extensions

DSSF (Deep Subspace Similarity Fusion) (Yang et al., 2018): uses an auto-encoder to improve the
discriminative similarity between samples

AFN (Affinity Network Fusion) (Ma and Zhang, 2018) : enables the consideration of patients'
pairwise distances

NEMO (NEighborhood based Multi-Omics clustering) (Rappoport and Shamir, 2019) : enables the
computation of global kernel matrix without performing any imputation on the missing
observation, handles unmatched samples (different sample sizes in different Omics-types)

INF (Integrative Network Fusion) (Chierici et al., 2020) : utilizes SNF within a predictive
framework including RF (Breiman, 2001) (Random Forest) and LSVM (Cortes and Vapnik, 1995)
(Linear Support Vector Machine)

Vahabi & Michailidis, 2022
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https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
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* Identify distinct molecular phenotypes

* Precision medicine
* Tailor treatment, prognosis
* Understand unique biological underpinnings

* Data integration challenges
* Large p, small n; data heterogeneity; complexity of inter-omics data; missing data

* Review of unsupervised clustering techniques
* Always trade-offs with each method
* Use multiple methods to get different views of data
* Clustering needs to be evaluated with various metrics

* Highlighted SNF as method for multi-omics clustering
* Consensus clustering can provide more stable, robust findings

ASA'[ Section on Statistics in 3 8
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Overall Considerations

* Hyperparameter tuning

e Identification of number of clusters
 Gap statistic, cluster prediction index, grid & random searches

e Definition of clusters, structure
* Feature Selection

* Computational Resources

ASA'[ Section on Statistics in
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