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I. Introduction
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Purpose/Goal

• Heterogenous diseases states, 
patient profiles

• Capture unique patterns of sub-
populations to guide treatment, 
understanding of individual’s 
disease

• Precision medicine

Vahabi & Michailidis, 2022



Uyar et al., 2021



Example: Breast Cancer
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Allison et al., 2017



Data Integration Challenges for Multi-Omics

• Curse of dimensionality: small number of samples compared to the 
large number of measurements
• Data heterogeneity: differences in scale, collection bias and noise in 

each data set
• Complexity of inter-omics variations: complementary nature of the 

information provided by different types of data.
• Missing data: methods require data for matched subjects
• Can address with imputation to some extent



II. Review of Concepts: 
Unsupervised Machine Learning 
& Clustering
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Review: Unsupervised Machine Learning

• 2 Common forms of UML
• Dimension Reduction

• Situations where p >> n (common in omics)
• Can a smaller number of features (e.g. 10) adequately represent all p (e.g. 1000 

features)?
• Principal component analysis (PCA), factor analysis
• Visual Interpretations

• Clustering Methods
• Identify groups among set of objects
• Cluster samples (rows of X): identify distinct subgroups of disease
• Cluster features (columns of X): identify groups of similar genes
• Objects within same cluster should similar while objects in 2 separate clusters should 

be different



Unsupervised Learning: Goals for Multi-Omics

• Classify
• Disease, sample subtype
• Find meaningful patterns or groups/clusters within X 

(“fingerprint”)
• Discover biomarkers/modules
• Prioritize genes associated with a disease
• Find genes that are co-expressed
• Co-expressed genes may have similar functions or 

may be co-regulated
• Clues into gene function

• Define outcomes for subtypes
• Do these clusters help predict patient survival, 

treatment, prognosis, more
Zitnik et al., 2019



Clustering 

• Grouping objects based on similarity within the group (internal) and 
dissimilarity to the objects belonging to other groups (intra-cluster)
• Need:
• Proximity/Distance metric
• Criterion to evaluate clustering
• Algorithm to compute clustering

• Optimizing criterion function



Distance/Proximity Metrics

Shirkhorshidi et al., 2015
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Common Clustering Algorithms
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Axioms for “Good” Clustering

• Scale Invariance:
• Clustering algorithm should not modify its results when all distances between points 

are scaled by the factor determined by a constant 
• Consistency:

• Clustering results do not change if the distances within clusters decrease and/or the 
distances between clusters increase

• Richness:
• Clustering function must be flexible enough to produce any arbitrary 

partition/clustering of the input data set
• “Kleinberg proves the following theorem: For every n >= 2, there is no clustering 

function f that satisfies scale invariance, richness, and consistency. [3]”
• Impossible for any clustering procedure to be able to satisfy all three axioms.
• Practical clustering algorithms must make trade-offs
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Palacio-Niño & Berzal, 2019



Clustering Challenges

• Defining distance metric
• Different data structures
• Identifying number (k) of clusters
• Assess clustering when truth is unknown
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Internal Cluster Validation

• No ground truth labels
• Focus on:
• Cluster cohesion and separation
• Statistical analysis of the proximity matrix
• The dendrogram generated by hierarchical clustering algorithms

• Examples: 
• Silhouette Coefficient, Calinski-Harabasz Index, Davies-Bouldin Index
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Silhouette Score
• Definition:
For object (subject) i

ai=ave. dist of object i to other objects in same cluster (mean intra-cluster distance)
bi=ave. dist of object i to other objects in closest neighboring cluster (mean nearest-cluster distance)
• Range: [-1, 1]

• Visually inspect the similarities within clusters and differences across clusters
• Assess how well-assigned each individual point is & how close each point in a cluster is 

to points in the neighboring clusters
• 1: ‘appropriate’ cluster; well-assigned; further away the cluster’s samples are from the neighboring 

clusters samples
• 0: right at the inflection point between two clusters; sample is on or very close to the decision 

boundary between two neighboring clusters
• -1: “inappropriate clustering”; assigned to wrong cluster 

• Global Silhouette Score: average of Silhouette values
• Describe the entire population’s performance with a single value

• Disadvantage: can be extremely expensive to compute on all n points
• Compute the distance of i from all other n — 1 points for each i, complexity of O(n2).
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External Cluster Validation

• Requires ground “truth” labels
• Externally-provided information to evaluate the quality of the 

clustering results
• External validation metrics are also useful when comparing the results 

provided by different clustering algorithms
• Examples:
• Adjusted Rand index, Fowlkes-Mallows scores, Mutual information based

scores, Jaccard Index, Homogeneity, Completeness and V-measure
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Rand Index

• Similarity measure 
• Compares all pairs of samples predicted 

and true clusterings
• Range: [0, 1]
• 1: perfect match

• Adjusted Rand Index: adjusted for 
chance 
• Range: [0, 1]
• 0: Random labelling
• 1: Clusters identical
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III. Multi-Omics Unsupervised 
Clustering



Subramanian et al., 2020



Recommended Methods

Zhang et al., 2022



Consensus Clustering
• Matrix per clustering algorithm 𝑡:

• 𝑀!"
($) = 1 : sample 𝑖 and 𝑗 are clustered in 

same subtype
• 𝑀!"

($) = 0 : otherwise

• Consensus Matrix: 𝐶𝑀 = ∑!"#
! !"# 𝑀(!)

• Probability matrix represents how many 
times samples belonging to the same 
subtype can be clustered together by 
different multi-omics clustering methods

• Robust pairwise similarities for samples 
across different multi-omics integrative 
clustering algorithms

• Clustering on 𝐶𝑀 (hierarchical)
• Looking for:

• Perfect diagonal rectangle
• Input values are 0 and 1 only because all 

algorithms derived the same clustering 
results
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IV. Methods Highlight: Similarity 
Network Fusion (SNF)



SNF - Introduction

• Uses networks of samples as a basis for integration
• Various omics datasets (both in type and number)
• The fused network captures both shared and complementary information 

from different data sources
• Insight into how informative each data type is to the observed similarity 

between samples
• Useful information even from a small number of samples
• Robust to noise and data heterogeneity
• Scales to a large number of genes
• Efficiently identify subtypes among existing samples by clustering and 

predict labels for new samples based on the constructed network
• Questions it can address:

• Samples' molecular/phenotypic profiles
• Subtyping and label prediction (sub-populations, drug response)



SNF - Introduction
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Step 2: Network Fusion

• Full, Normalized Kernel, P

• 𝑷 𝒊, 𝒋 = &
𝑾(𝒊,𝒋)

𝟐 ∑𝒌"𝒊 𝑾(𝒊,𝒌)
, 𝒋 ≠ 𝒊

𝟏
𝟐
, 𝒋 = 𝒊

• Sparse Kernel, Local Affinity, S

• 𝑺 𝒊, 𝒋 = )
𝑾(𝒊,𝒋)

∑𝒌∈𝑵𝒊 𝑾(𝒊,𝒌)
, 𝒋 ∈ 𝑵𝒊

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Iterate (2 data types)
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(𝟏)× 𝑺(𝟐) 𝑻

Overall Status Matrix

• 𝑷(𝒄) = 𝑷𝒕
(𝟏)"𝑷𝒕

(𝟐)

𝟐

Multiple data sets:

• 𝑷 𝒕"𝟏
(𝟏) =
∑𝒌∈𝑵𝒊∑𝒍∈𝑵𝒋 𝑺
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SNF – Downstream Analyses

• Network-clustering: disease subtyping
• Spectral clustering

• Use patient clusters/sub-types to test for associations with outcomes
• E.g. Cancer types, survival, drug response

• Identify common and complementary signals across data type
• Reduce noise by aggregating across multiple types of data
• Provide insight into the relative importance of each data source for 

determining patient similarity
• Refine the understanding of the heterogeneity within each subtype



Figure 2: Patient similarities for each of the data 
types independently compared to SNF fused 
similarity.
(a–d) Patient-to-patient similarities for 215 
patients with GBM represented by similarity 
matrices and patient networks, where nodes 
represent patients, edge thickness reflects the 
strength of the similarity, and node size 
represents survival. Clusters are coded in 
grayscale (subtypes 1–3) and arranged according 
to the subtypes revealed through spectral 
clustering of the combined patient network. The 
clustering representation is preserved for all four 
networks to facilitate visual comparison. DNA 
methylation (a), mRNA expression (b), miRNA 
expression (c) and SNF-combined similarity 
matrix and network (d; see Supplementary Fig. 
11 for more information about network edges).

Wang et al., 2014

https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810


SNF – Applicable Data

• Matched data by patients
• N of omics datasets: multiple
• Types: Continuous, binary, and categorical
• Clinical:
• Such as microbiome and metabolomics data, questionnaires and functional 

magnetic resonance imaging, together with genomic, clinical and demographic 
data
• Just requires: the data can be used to identify similarity between patients



SNF – Assumptions & Considerations

• Hyperparameters
• Simulations show method not sensitive to different settings of hyperparameters
• 𝜇 : from calculating patient similarity networks (individual data types)

• Recommend setting μ in the range of [0.3, 0.8]
• K: number of clusters

• The rule of thumb for choosing parameter K: K = N/C
• N : number of patients
• C : number of clusters that is believed to be in the data
• If C is unknown, we usually set K ≈ N/10

• KNN implies local similarities are more reliable than remote ones
• Distance/Similarity Metrics

• Euclidean for continuous data, Chi-squared for binary, categorical
• Others are possible (correlation, etc.)

• Identifying number of clusters for subtyping with spectral clustering, recommend 
eigengap



SNF – Assumptions & Considerations

• Outliers
• Missing data, imputation

• KNN, same K as in method
• Removal of patients with more than 20% missing data in a certain data type

• Normalization
• '𝑓 = &'((&)

)*+(&)
• 𝑓: any biological feature
• '𝑓: biological feature following normalization
• 𝐸(𝑓): empirical mean of 𝑓
• 𝑉𝑎𝑟(𝑓): empirical variance of 𝑓

• Combining data types
• Normalized mutual information (NMI) to check for concordance of data types



SNF – Pros 

• Flexible: Multiple omics types and multiple number of data sets
• Can integrate various gene-interaction data, such as physical interactions, 

coexpression and colocalization data
• Provide insight into how informative each data type is to observed 

similarities of samples
• Small number of samples
• Robust to noise, data heterogeneity
• Computationally efficient

• Guaranteed to converge
• Number of iterations > 20 always enough to converge
• Scales to large numbers of features



SNF – Cons 

• Requires matched samples, no missingness
• Does not distinguish between data types à false fusion
• Uses Euclidean distance to calculate the similarity matrices between the 

samples
• May be incapable of capturing the data’s unique structure



SNF - Extensions

• DSSF (Deep Subspace Similarity Fusion) (Yang et al., 2018): uses an auto-encoder to improve the 
discriminative similarity between samples

• AFN (Affinity Network Fusion) (Ma and Zhang, 2018) : enables the consideration of patients' 
pairwise distances

• NEMO (NEighborhood based Multi-Omics clustering) (Rappoport and Shamir, 2019) : enables the 
computation of global kernel matrix without performing any imputation on the missing 
observation, handles unmatched samples (different sample sizes in different Omics-types)

• INF (Integrative Network Fusion) (Chierici et al., 2020) : utilizes SNF within a predictive 
framework including RF (Breiman, 2001) (Random Forest) and LSVM (Cortes and Vapnik, 1995) 
(Linear Support Vector Machine)

Vahabi & Michailidis, 2022

https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.854752/full


V. Conclusion



Summary

• Identify distinct molecular phenotypes
• Precision medicine
• Tailor treatment, prognosis
• Understand unique biological underpinnings

• Data integration challenges
• Large p, small n; data heterogeneity; complexity of inter-omics data; missing data

• Review of unsupervised clustering techniques
• Always trade-offs with each method
• Use multiple methods to get different views of data
• Clustering needs to be evaluated with various metrics

• Highlighted SNF as method for multi-omics clustering
• Consensus clustering can provide more stable, robust findings
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Overall Considerations

• Hyperparameter tuning
• Identification of number of clusters
• Gap statistic, cluster prediction index, grid & random searches

• Definition of clusters, structure
• Feature Selection
• Computational Resources



Lab Session: MOVICS

40
Lu et al., 2021
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