
Lecture 2 Lab

April 10, 2023

1 Introduction
We’ll now use the R package MOVICS to explore unsupervised clustering methods of multi-omic
data, including SNF. Given clustering can pick up on different structures in the data, with each
method having its own pros/cons and situations where it is best suited, it’s important to com-
pare various clustering methods. This will provide more robust results and help reduce identifying
clusters based on an aberrant signal that a particular method may be identifying. MOVICS pro-
vides a user-friendly, well-integrated pipeline to perform clustering with 10 different methods as
well as consensus clustering. Currently, it supports up to 6 omics data types for joint clustering.
Furthermore, it offers numerous downstream analyses.

The methods include: * SNF * IntNMF * LRAcluster * NEMO * PINSPlus * CIMLR * iCluster-
Bayes * MoCluster * COCA * ConsensusClustering

There is also an excellent vignette provided: https://xlucpu.github.io/MOVICS/MOVICS-
VIGNETTE.html#Section.4.2.1.2

The overall pipeline is illustrated below (image from MOVICS documentation):

[1]: ## to install MOVICS
### note: there are many dependencies; you may get an error
### for a missing package; download and try again
### it may take several times
### you can refer to their IMPORTS file from their DESCRIPTION file on Github
### for a list of dependencies:
### https://github.com/xlucpu/MOVICS/blob/master/DESCRIPTION

# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# if (!require("devtools"))
# install.packages("devtools")
# devtools::install_github("xlucpu/MOVICS")

library(MOVICS)
set.seed(4444)
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[2]: library("jpeg")
jj <- readJPEG("MOVICS_pipeline.jpeg",native=TRUE)
plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE)
rasterImage(jj,0,0,1,1)

And as a quick reminder from our presentation, here’s a table from Zhang’s 2021 paper
(https://doi.org/10.1002/wics.1553) that provided a nice summary of a comparison between many
of these methods and scenarios in which they’re recommended.

[3]: jj <- readJPEG("methods_comparison.jpeg",native=TRUE)
plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE)
rasterImage(jj,0,0,1,1)
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2 Data
We’ll be using mRNA expression, microRNA (miRNA), and DNA methylation data from 343
subjects with breast cancer (from TCGA’s BRCA data). The omics data was originally provided
with the R package r.jive which had already completed the initial pre-processing steps of each
data type. The clinical data was sourced from TCGAbiolinks. For the Rdata file you’ve found on
the Github, I also did some formatting of the data to streamline analyses in this lab. I matched all
dataset by subject and formatted clinical data to factors when needed. I then save the data as an
Rdata file as a list the following structure:

brca_dat <- list("clinical" = dataClin,
"MO" = list(
"Expression" = exp_matched,
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"Methylation" = methyl_matched,
"miRNA" = miRna_matched
))

It’s essentially a list with a dataframe for clinical data under “clinical”, and then a list (“MO”) of
the 3 omics types (“Expression” for mRNA expression, “Methylation” for DNA methylation, and
“miRNA” for the microRNA expression).

NOTE: It is very imporant that all data is matched by sample!

We’ll be using the same omics data from r.jive in our third lab so you can get a sense of how the
various approaches might compare.

The data were originally referenced in this article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465532/#!po=47.7273

The following arrays were used:

• mRNA Gene Expression Profiling: Agilent custom 244K whole genome microarrays
• Array-based DNAmethylation assay: Illumina Infinium DNAmethylation platforms, Human-

Methylation27 (HM27) BeadChip and HumanMethylation450 (HM450) BeadChip (Illumina,
San Diego, CA)

The microRNA was sequenced.

2.1 Pre-processing Steps
The following pre-processing steps were performed, as detailed by:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789539/#sec-10title

RNA Expression:

• Missing mRNA expression values were imputed with k-nearest-neighbors
• Select the most variable genes: those with a standard deviation > 1.5

miRNA Expression:

• miRNAs with more than 50% missing values were removed
• log-transform the data (log(1 + miRNA))

We have a total of 343 subjects, 645 mRNA transcripts, 574 CpG sites (methylation), 423 miRNA
transcripts.

3 Goal
Our goal with this analysis will be subtype the subjects by omics profiles, then test those identified
subtypes with outcomes or other clinical traits. We’ll also explore differences in the subtypes’ omics
profiles with differential expression and gene set enrichment.

[4]: # install.packages("Rfssa") if you want to download through github
library(Rfssa)
url <- "https://github.com/KechrisLab/ASAShortCourse-MultiOmics/blob/main/

↪Lecture%202/brca_dat.Rdata"
load_github_data(url)

4



# load("brca_dat.Rdata")

Loading required package: dplyr

Attaching package: 'dplyr'

The following object is masked from 'package:Biobase':

combine

The following objects are masked from 'package:BiocGenerics':

combine, intersect, setdiff, union

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo

[5]: # let's get a quick look at our data
names(brca_dat)
paste("dim of clinical data:", dim(brca_dat[["clinical"]]))
head(brca_dat[["clinical"]])

# check sample names all match
identical(brca_dat[["clinical"]]$bcr_patient_barcode,␣

↪colnames(brca_dat[["MO"]][["Expression"]]))
identical(brca_dat[["clinical"]]$bcr_patient_barcode,␣

↪colnames(brca_dat[["MO"]][["Methylation"]]))
identical(brca_dat[["clinical"]]$bcr_patient_barcode,␣

↪colnames(brca_dat[["MO"]][["miRNA"]]))
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identical(colnames(brca_dat[["MO"]][["Expression"]]),␣
↪colnames(brca_dat[["MO"]][["Methylation"]]))

identical(colnames(brca_dat[["MO"]][["Expression"]]),␣
↪colnames(brca_dat[["MO"]][["miRNA"]]))

identical(colnames(brca_dat[["MO"]][["Methylation"]]),␣
↪colnames(brca_dat[["MO"]][["miRNA"]]))

# should all be TRUE (6)

1. ’clinical’ 2. ’MO’

1. ’dim of clinical data: 343’ 2. ’dim of clinical data: 14’

A data.frame: 6 x 14

bcr_patient_barcode age_at_diagnosis ajcc_pathologic_stage ajcc_pathologic_t ajcc_pathologic_n ajcc_pathologic_m vital_status days_to_death days_to_last_followup pathologic_stage BRCA_Pathology BRCA_Subtype_PAM50 fustat futime
<chr> <int> <fct> <fct> <fct> <fct> <chr> <chr> <chr> <fct> <fct> <fct> <dbl> <dbl>

TCGA-A1-A0SH TCGA-A1-A0SH 14595 Stage IIA T2 N0 (i-) M0 Alive NA 1437 Stage_II Mixed LumA 0 1437
TCGA-A1-A0SJ TCGA-A1-A0SJ 14383 Stage IIIA T3 N1a M0 Alive NA 416 Stage_III IDC LumA 0 416
TCGA-A1-A0SK TCGA-A1-A0SK 20048 Stage IIA T2 N0 (i-) M0 Dead 967 NA Stage_II Other Basal 1 967
TCGA-A1-A0SO TCGA-A1-A0SO 24826 Stage IIB T2 N1 M0 Alive NA 852 Stage_II NA Basal 0 852
TCGA-A2-A04N TCGA-A2-A04N 24155 Stage IA T1c N0 (i-) M0 Alive NA 4354 Stage_I Other LumA 0 4354
TCGA-A2-A04P TCGA-A2-A04P 13238 Stage IIIC T2 N3c M0 Dead 548 NA Stage_III IDC Basal 1 548

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

[6]: paste("names of MO data:", names(brca_dat[["MO"]]))
paste("dim of mRNA data:", dim(brca_dat[["MO"]][["Expression"]]))
paste("dim of methylation data:", dim(brca_dat[["MO"]][["Methylation"]]))
paste("dim of miRNA data:", dim(brca_dat[["MO"]][["miRNA"]]))

1. ’names of MO data: Expression’ 2. ’names of MO data: Methylation’ 3. ’names of MO data:
miRNA’

1. ’dim of mRNA data: 645’ 2. ’dim of mRNA data: 343’

1. ’dim of methylation data: 574’ 2. ’dim of methylation data: 343’

1. ’dim of miRNA data: 423’ 2. ’dim of miRNA data: 343’

Let’s make sure there are no missing values:

[7]: # data checking -- are there any missing values?
sum(is.na(brca_dat[["MO"]][["Expression"]]))
sum(is.na(brca_dat[["MO"]][["Methylation"]]))
sum(is.na(brca_dat[["MO"]][["miRNA"]]))

0
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0

0

Let’s also have a quick look at the distributions:

[8]: # exp
range(brca_dat[["MO"]][["Expression"]])
plot(density(brca_dat[["MO"]][["Expression"]]), main = "Expression")

# methyl
range(brca_dat[["MO"]][["Methylation"]])
plot(density(brca_dat[["MO"]][["Methylation"]]), main = "Methylation")

# miRNA
range(brca_dat[["MO"]][["miRNA"]])
plot(density(brca_dat[["MO"]][["miRNA"]]), main = "miRNA")

1. -10.16825 2. 12.163125

1. 0.0845073783760921 2. 0.993792875301489
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1. 0 2. 13.32126401793
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4 Identifying Variable Features
With omics data, it is important to filter to the most variable features. This will reduce the
dimensions as well as focus our analysis to only “important” features or adequately strong signals.
The data we’re working with has already done this, but here’s a brief look at how it could be done
with MOVICS using the getElites() function.

elite.tmp <- getElites(dat = single_MO_dataset,
method = "mad", (see below for further options)
na.action = "impute", # NA values will be imputed
elite.pct = 0.1) # keep only top 10% features with high mad values

This function provides the following methods to identify the most variable features:
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• “mad” - median absolute deviation (default)
• “sd” - standard deviation
• “pca” - principle componenets analysis
• “cox” - univariate Cox proportional hazards regression
• “freq” - frequency, for binary omics data

It allows for imputation of missing values using k-nearest-neighbors. Note that the default is to
remove missing values.

Additionally, there are parameters to log2-transform, center, and scale the data prior to filtering.
And of course refer to the documentation for additional options.

5 Identifying Optimal Clusters k
One of the key parameters an analyst sets for unsupervised clustering is the number of clusters to
use, k.

MOVICS provides the function getClustNum() to calculate the Cluster Prediction Index (CPI;
Chalise 2017) and Gap Statististc (Tibshirani 2001). The function will estimate the number of
clusters to maximize both of these values.

However, it is important to look at the plot holistically. If biological knowledge highly suggests
a certain number of clusters have been noted in a disease, and the CPI and Gap statistic at that
number are still quite high, it might make sense to use that number of clusters versus the one algo-
rtihmically defined here. The original paper associated with the BRCA data identified 4 subtypes,
and a commonly used classifier, PAM50 (based on 50 genes) also has 4 subtypes. (See figure below;
from https://doi.org/10.1016/B978-0-12-800886-7.00021-2) The results of getClustNum suggested 3
subtypes here, but given this biological knowledge and small differences in the CPI and gap statistic
if we increase to k=4, I selected 4 subtypes. Furthermore, Silhoutte scores (below) suggested better
clustering with 4 groups.

Summary of Statistics:

• CPI: a resampling method using intNMF. It repeatedly partitions the data into training and
testing sets. “Observed” clusters are the clustering assignments from running intNMF on the
testing set directly; “Predicted” clusters are those predicted for the test data using intNMF
on the training data to build a model. The degree of consensus/agreement is calculated with
an adjusted rand index. CPI is the average of the adjusted rand indices after repeating several
times.

• Gap Statistic: “compares change of within-cluster dispersion with that expected under ap-
propriate reference null distribution”

[9]: jj <- readJPEG("ex_breastcancer_pic.jpeg")
plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE)
rasterImage(jj,0,0,1,1)
# https://doi.org/10.1016/B978-0-12-800886-7.00021-2
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[10]: optk.brca <- getClustNum(data = brca_dat[["MO"]],
is.binary = c(F,F,F), # all omics data is continuous␣

↪(not binary)
try.N.clust = 2:8, # try cluster number from 2 to 8
fig.name = "CLUSTER NUMBER OF TCGA-BRCA")

calculating Cluster Prediction Index…

5% complete

5% complete

10% complete
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10% complete

15% complete

15% complete

20% complete

25% complete

25% complete

30% complete

30% complete

35% complete

35% complete

40% complete

45% complete

45% complete

50% complete

50% complete

55% complete

55% complete

60% complete

65% complete

65% complete

70% complete

70% complete

75% complete

75% complete
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80% complete

85% complete

85% complete

90% complete

90% complete

95% complete

95% complete

100% complete

calculating Gap-statistics…

visualization done…

--the imputed optimal cluster number is 3 arbitrarily, but it would be better
referring to other priori knowledge.
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[12]: optk.brca

$N.clust 3

$CPI A data.frame: 7 x 5

run1 run2 run3 run4 run5
<dbl> <dbl> <dbl> <dbl> <dbl>

k2 0.8432502 0.7282426 0.7316823 0.7425548 0.8233950
k3 0.6059018 0.7734596 0.6479677 0.8111728 0.5258236
k4 0.4500327 0.5359211 0.4930524 0.5138497 0.4643814
k5 0.3129734 0.2815951 0.3444218 0.3395948 0.2953664
k6 0.2948730 0.3657889 0.3485947 0.4040925 0.4018108
k7 0.3452716 0.3447002 0.3492336 0.3091536 0.3750556
k8 0.2977934 0.3017578 0.3338568 0.2933031 0.2802605
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$Gapk A data.frame: 7 x 4

logW E.logW gap SE.sim
<dbl> <dbl> <dbl> <dbl>

2 7.341067 7.585790 0.2447224 0.02841250
3 6.931700 7.407904 0.4762041 0.03260670
4 6.823207 7.234078 0.4108715 0.03826871
5 6.733596 7.118257 0.3846612 0.03225452
6 6.662954 7.018019 0.3550653 0.03089040
7 6.571253 6.934678 0.3634251 0.02677588
8 6.509093 6.865159 0.3560663 0.02663530

[13]: # what if we use the suggested k=3 clusters?
# you don't need to run this during lab; I'm just presenting it as an example
mo_rslts_3 <- getMOIC(data = brca_dat[["MO"]],

methodslist = list("SNF", "PINSPlus", "NEMO",␣
↪"LRAcluster", "IntNMF"),

N.clust = 3,
type = c("gaussian", "gaussian", "gaussian"))

cmoic.brca_3 <- getConsensusMOIC(moic.res.list = mo_rslts_3,
fig.name = "CONSENSUS HEATMAP - 3 Clusters",
distance = "euclidean",
linkage = "average")

getSilhouette(sil = cmoic.brca_3$sil, # a sil object returned by␣
↪getConsensusMOIC()

fig.path = getwd(),
fig.name = "SILHOUETTE",
height = 5.5,
width = 5)

--you choose more than 1 algorithm and all of them shall be run with parameters
by default.

SNF done…

Clustering method: kmeans

Perturbation method: noise

PINSPlus done…

NEMO done…

LRAcluster done…

IntNMF done…
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pdf: 2
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6 Perform Unsupervised Clustering
We will now use the main workhorse of MOVICS to perform unsupervised clustering of our omics
data, using SNF as well as NEMO, IntNMF, LRAcluster, and PINSPlus. The package contains
other methods as well, but we have selected just a few to limit computational burdens during this
lab. I would suggest playing around with them on your own following our session.

We will focus on the results of SNF and compare them to the larger consensus clustering using
SNF and the 4 other methods.

Note that if you want to specify specific parameters for a method, you can use the function
“get”(method name) (e.g. getSNF()), then compile the results into a list.
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[14]: mo_rslts <- getMOIC(data = brca_dat[["MO"]],
methodslist = list("SNF", "PINSPlus", "NEMO",␣

↪"LRAcluster", "IntNMF"),
N.clust = 4, # set number of clusters
type = c("gaussian", "gaussian", "gaussian")) #␣

↪what is the distribution of the datasets in MO list (same order)

--you choose more than 1 algorithm and all of them shall be run with parameters
by default.

SNF done…

Clustering method: kmeans

Perturbation method: noise

PINSPlus done…

NEMO done…

LRAcluster done…

IntNMF done…

7 Get Consensus of Clustering Methods
We’ll now use the function getConsensusMOIC to build a consensus matrix from our clustering
results from the 4 methods.

The package developers built this function with the idea of consensus ensembles in mind to generate
a consensus matrix of our clustering methods. This will improve our robustness. The idea is to
calculate a matrix 𝑀 (𝑡)

𝑛𝑥𝑛 per each algorithm. 𝑀 (𝑡)
𝑖𝑗 = 1 when samples 𝑖 and 𝑗 are in the same

subtype, otherwise 𝑀 (𝑡)
𝑖𝑗 = 0. The consensus matrix is then: 𝐶𝑀 = ∑𝑡𝑚𝑎𝑥

𝑡=1 𝑀 (𝑡).

This matrix “represents robust pairwise similarities for the samples because it considers different
multi-omics integrative clustering algorithms. MOVICS then searches for a stable clustering result
by applying hierarchical clustering to 𝐶𝑀 .

𝐶𝑀 a probability matrix that represents how many times samples belonging to the same sub-
type can be clustered together by different multi-omics clustering methods. Ideally, the consensus
heatmap will show a perfect diagonal rectangle, and the input values are 0 and 1 only because all
algorithms derived the same clustering results.”

The function will provide the following:

• consensus.hm: an object returned by pheatmap

• similarity: a similary matrix for pair-wise samples with entries ranging from 0 to 1

• sil: a silhouette object that can be further passed to getSilhouette
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• clust.res: a data.frame storing sample ID and corresponding clusters

• clust.dend: a dendrogram of sample clustering

• mo.method: a string value indicating the method used for multi-omics integrative clustering

[15]: cmoic.brca <- getConsensusMOIC(moic.res.list = mo_rslts,
fig.name = "CONSENSUS HEATMAP - 4 Clusters",
distance = "euclidean",
linkage = "ward.D")

We can also quantify and visualize the sample similarity more specifically given the identified
clusters using Silhouette scores.

The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared
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to other clusters (separation). The silhouette ranges from −1 to +1, where a high value indicates
that the object is well matched to its own cluster and poorly matched to neighboring clusters. If
most objects have a high value, then the clustering configuration is appropriate. If many points
have a low or negative value, then the clustering configuration may have too many or too few
clusters. (https://en.wikipedia.org/wiki/Silhouette_(clustering))

[16]: getSilhouette(sil = cmoic.brca$sil, # a sil object returned by␣
↪getConsensusMOIC()

fig.path = getwd(),
fig.name = "SILHOUETTE",
height = 5.5,
width = 5)

pdf: 2
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8 Multi-Omics Heatmap
We can get a good visualization of our data by building a genome-wide heatmap. This can provide
insight on how the samples and genes cluster together or potential sample biases or other artifacts.

We must first make sure our data are appropriately processed for visualization. For continu-
ous data, particularly expression data (e.g., RNA and protein), we should center (centerFlag =
TRUE), scale (scaleFlag = TRUE), or z-score (both centered and scaled). DNA methyatlion data
is usually measured in terms of 𝛽-values, which describe the percent methylation at that probe
and is bimodally distributed (see above). Therefore, we convert the 𝛽-values to M-values using
the formula: 𝑀 = 𝑙𝑜𝑔2

𝛽
(1−𝛽) . This leads to a stronger signal in visualization and we can normalize

these M-values.

This function also provides an argument of halfwidth for continuous omics data; this is used to trun-
cate the ‘extremum’ after normalization; specifically, normalized values that exceed the halfwidth
boundaries will be replaced by the halfwidth, which is beneficial to map colors in heatmap.

I’ve also added annotations for the PAM50 subtypes to help compare our findings with previous
knowledge.

[17]: # convert beta value to M value for stronger signal
std_dat <- brca_dat[["MO"]]
std_dat[["Methylation"]] <- log2(std_dat[["Methylation"]] / (1 -␣

↪std_dat[["Methylation"]]))

# data normalization for heatmap
plotdata <- getStdiz(data = std_dat,

halfwidth = c(2,2,2), # no truncation for mutation
centerFlag = c(T,T,T), # no center for mutation
scaleFlag = c(T,T,T)) # no scale for mutation

mRNA.col <- c("#00FF00", "#008000", "#000000", "#800000", "#FF0000")
meth.col <- c("#0074FE", "#96EBF9", "#FEE900", "#F00003")
miRNA.col <- c("#6699CC", "white" , "#FF3C38")
col.list <- list(mRNA.col, meth.col, miRNA.col)

# extract PAM50, pathologic stage for sample annotation
annCol <- brca_dat[["clinical"]][,c("BRCA_Subtype_PAM50"), drop = FALSE]

# generate corresponding colors for sample annotation
annColors <- list(

BRCA_Subtype_PAM50 = c("Basal" = "blue",
"Her2" = "red",
"LumA" = "yellow",
"LumB" = "green",
"Normal" = "black")

)
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8.1 SNF
[18]: # comprehensive heatmap

getMoHeatmap(data = plotdata,
row.title = names(std_dat),
is.binary = c(F,F,F), # we don't have any binary omics data␣

↪(ex mutation)
legend.name = c("mRNA","M value","miRNA"),
clust.res = mo_rslts$SNF$clust.res, # cluster results for SNF
color = col.list,
# annCol = annCol, # annotation for samples (if you want to␣

↪show PAM50 classes too)
# annColors = annColors, # annotation color
width = 10, # width of each subheatmap
height = 5, # height of each subheatmap
fig.name = "COMPREHENSIVE HEATMAP OF SNF")
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8.2 PINSPlus
[19]: getMoHeatmap(data = plotdata,

row.title = names(std_dat),
is.binary = c(F,F,F), # all data is continuous
legend.name = c("mRNA","M value","miRNA"),
clust.res = mo_rslts$PINSPlus$clust.res, # cluster results for␣

↪PINSPlus
color = col.list,
width = 10, # width of each subheatmap
height = 5, # height of each subheatmap
fig.name = "COMPREHENSIVE HEATMAP OF PINSPlus")
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8.3 NEMO
[20]: # comprehensive heatmap (may take a while)

getMoHeatmap(data = plotdata,
row.title = names(std_dat),
is.binary = c(F,F,F),
legend.name = c("mRNA","M value","miRNA"),
clust.res = mo_rslts$NEMO$clust.res, # cluster results for NEMO
color = col.list,
width = 10, # width of each subheatmap
height = 5, # height of each subheatmap
fig.name = "COMPREHENSIVE HEATMAP OF PINSPlus")
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8.4 LRAcluster
[21]: # comprehensive heatmap (may take a while)

getMoHeatmap(data = plotdata,
row.title = names(std_dat),
is.binary = c(F,F,F),
legend.name = c("mRNA","M value","miRNA"),
clust.res = mo_rslts$LRAcluster$clust.res, # cluster results␣

↪for LRAcluster
color = col.list,
width = 10,
height = 5,
fig.name = "COMPREHENSIVE HEATMAP OF PINSPlus")
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8.5 IntNMF
[22]: # comprehensive heatmap (may take a while)

getMoHeatmap(data = plotdata,
row.title = names(std_dat),
is.binary = c(F,F,F),
legend.name = c("mRNA","M value","miRNA"),
clust.res = mo_rslts$IntNMF$clust.res, # cluster results for␣

↪intNMF
color = col.list,
width = 10, # width of each subheatmap
height = 5, # height of each subheatmap
fig.name = "COMPREHENSIVE HEATMAP OF IntNMF")

27



8.6 Consensus Matrix
[23]: getMoHeatmap(data = plotdata,

row.title = names(plotdata),
is.binary = c(F,F,F), # no binary omics data
legend.name = c("mRNA","M value","miRNA"),
clust.res = cmoic.brca$clust.res, # consensusMOIC results
clust.dend = NULL, # show no dendrogram for samples
show.colnames = FALSE, # show no sample names
show.row.dend = c(T,T,T), # show dendrogram for features
annRow = NULL, # no selected features
color = col.list,
annCol = annCol, # annotation for samples
annColors = annColors, # annotation color
width = 10, # width of each subheatmap
height = 5, # height of each subheatmap
fig.name = "COMPREHENSIVE HEATMAP OF CONSENSUSMOIC")
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[24]: clust_rslts_SNF_df <- data.frame(mo_rslts$SNF$clust.res)
colnames(clust_rslts_SNF_df) <- c("samID", "SNF")
clust_rslts_CM_df <- data.frame(cmoic.brca$clust.res)
colnames(clust_rslts_CM_df) <- c("samID", "Consensus")

clust_rslts_df <- merge(clust_rslts_SNF_df, clust_rslts_CM_df, by="samID")
# head(clust_rslts_df)

table(clust_rslts_df$SNF, clust_rslts_df$Consensus)

1 2 3 4
1 0 66 0 0
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2 5 0 76 2
3 104 0 0 0
4 12 2 0 76

9 How are our clusters different?: the COMP Module
Now we will explore how the clusters or subtypes we’ve identified differ with regard to patient
characteristics. We’ll explore survival outcomes, compare clinical features, and agreement with the
PAM50 subtype.

9.1 Survival Outcomes
We’ll start with using the compSurv() function to compare survival among our identified sub-
types. This function will calculate the overall nominal P value by log-rank test, perform pairwise
comparisons with adjusted p-values with BH, and provide a Kaplan-Meier Curve for visulaization.

We must also provide data frame that includes the subejcts’ survival data (surv.info argument).
Again, rownames must match our previous data. It must also have a column futime for survival
time (in days) and another column fustat for survival outcome (0 = censor; 1 = event).

The result will provide the following:

• A figure of multi-omics Kaplan-Meier curve (.pdf) and a list with the following components:

• fitd: an object returned by survdiff.

• fid: an object returned by survfit.

• xyrs.est: x-year probability of survival and the associated lower and upper bounds of the 95

• overall.p: a nominal p.value calculated by Kaplain-Meier estimator with log-rank test

• pairwise.p: an object of class “pairwise.htest” which is a list containing the p values (see
pairwise_survdiff); (only returned when more than 2 subtypes are identified).

[25]: # survival comparison
brca_dat[["clinical"]]$futime = as.numeric(brca_dat[["clinical"]]$futime)
head(brca_dat[["clinical"]])
surv.brca <- compSurv(moic.res = cmoic.brca,

surv.info = brca_dat[["clinical"]],
convt.time = "m", # convert day unit to month
surv.median.line = "h", # draw horizontal line at median␣

↪survival
xyrs.est = c(5,10), # estimate 5 and 10-year␣

↪survival
fig.name = "KAPLAN-MEIER CURVE OF CONSENSUSMOIC")
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A data.frame: 6 x 14

bcr_patient_barcode age_at_diagnosis ajcc_pathologic_stage ajcc_pathologic_t ajcc_pathologic_n ajcc_pathologic_m vital_status days_to_death days_to_last_followup pathologic_stage BRCA_Pathology BRCA_Subtype_PAM50 fustat futime
<chr> <int> <fct> <fct> <fct> <fct> <chr> <chr> <chr> <fct> <fct> <fct> <dbl> <dbl>

TCGA-A1-A0SH TCGA-A1-A0SH 14595 Stage IIA T2 N0 (i-) M0 Alive NA 1437 Stage_II Mixed LumA 0 1437
TCGA-A1-A0SJ TCGA-A1-A0SJ 14383 Stage IIIA T3 N1a M0 Alive NA 416 Stage_III IDC LumA 0 416
TCGA-A1-A0SK TCGA-A1-A0SK 20048 Stage IIA T2 N0 (i-) M0 Dead 967 NA Stage_II Other Basal 1 967
TCGA-A1-A0SO TCGA-A1-A0SO 24826 Stage IIB T2 N1 M0 Alive NA 852 Stage_II NA Basal 0 852
TCGA-A2-A04N TCGA-A2-A04N 24155 Stage IA T1c N0 (i-) M0 Alive NA 4354 Stage_I Other LumA 0 4354
TCGA-A2-A04P TCGA-A2-A04P 13238 Stage IIIC T2 N3c M0 Dead 548 NA Stage_III IDC Basal 1 548

--a total of 343 samples are identified.

[26]: print(surv.brca)
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$fitd
Call:
survdiff(formula = Surv(futime, fustat) ~ Subtype, data = mosurv.res,

na.action = na.exclude)

N Observed Expected (O-E)^2/E (O-E)^2/V
Subtype=CS1 121 13 18.36 1.563 2.544
Subtype=CS2 68 9 11.86 0.691 0.942
Subtype=CS3 76 10 8.22 0.384 0.469
Subtype=CS4 78 16 9.56 4.341 5.447

Chisq= 7 on 3 degrees of freedom, p= 0.07

$fit
Call: survfit(formula = Surv(futime, fustat) ~ Subtype, data = mosurv.res,

na.action = na.exclude, error = "greenwood", type = "kaplan-meier",
conf.type = "plain")

n events median 0.95LCL 0.95UCL
CS1 121 13 140 102.5 NA
CS2 68 9 NA NA NA
CS3 76 10 107 77.8 NA
CS4 78 16 129 81.4 NA

$xyrs.est
Call: survfit(formula = Surv(futime, fustat) ~ Subtype, data = mosurv.res)

Subtype=CS1
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1825 41 6 0.925 0.0303 0.867 0.986
3650 6 5 0.705 0.1088 0.521 0.954

Subtype=CS2
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1825 22 9 0.782 0.0677 0.66 0.927
3650 7 0 0.782 0.0677 0.66 0.927

Subtype=CS3
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1825 14 4 0.913 0.0434 0.832 1.000
3650 2 6 0.325 0.1664 0.119 0.886

Subtype=CS4
time n.risk n.event survival std.err lower 95% CI upper 95% CI
1825 20 13 0.695 0.0748 0.563 0.858
3650 3 1 0.625 0.0942 0.465 0.840
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$overall.p
[1] 0.07072748

$pairwise.p

Pairwise comparisons using Log-Rank test

data: mosurv.res and Subtype

CS1 CS2 CS3
CS2 0.776 - -
CS3 0.378 0.596 -
CS4 0.083 0.329 0.621

P value adjustment method: BH

9.2 Compare Clinical Features
Here we’ll compare pathologic stages of the cancers, defined by the American Joint Committee on
Cancer (AJCC).

As summarized by Johns Hopkins:

The “pathologic stage” of a cancer takes into consideration the characteristics of the tumor (“T”)
and the presence of any lymph nodes metastases (“N”) or distant organ metastases (“M”). These
features are assigned individual scores called the pathologic T stage (T0-4), N stage (N1-3) and
M stage (M0-1) are combined to form a final overall pathology stage (stage 0-IV). The patho-
logic stage is determined by the findings at the time of surgery and is different from the “clini-
cal stage,” which is the stage estimated based upon the findings on clinical exam and radiology.
(https://pathology.jhu.edu/breast/staging-grade)

We will compare the agreement using four statistics: Rand Index (RI), Adjusted Mutual Informa-
tion (AMI), Jaccard Index (JI), and Fowlkes-Mallows (FM); all these measurements range from 0
to 1 and the larger the value is, the more similar the two appraises are. This function can also
generate an alluvial diagram to visualize the agreement of two appraises with the current subtypes
as reference.

We use the compClinvar function which will result in a summary table comparing the subtypes
from our clustering with identified variables. This resulting table can also be formatted into Word
if needed with the flag doWord = TRUE.

We coded our clinical variables regarding the various stages as factors. We also tested the continuous
variable of age at diagnosis (days).

[27]: # clinVars_df <- brca_dat[["clinical"]][,c("ajcc_pathologic_stage",␣
↪"age_at_diagnosis","ajcc_pathologic_t",␣
↪"ajcc_pathologic_n","ajcc_pathologic_m")]

clinVars_df <- brca_dat[["clinical"]]
rownames(clinVars_df) <- clinVars_df$bcr_patient_barcode
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clinVars_df <- clinVars_df[,c( "ajcc_pathologic_stage", "ajcc_pathologic_t",␣
↪"ajcc_pathologic_n", "ajcc_pathologic_m", "age_at_diagnosis")]

head(clinVars_df)

clin.brca <- compClinvar(moic.res = cmoic.brca,
var2comp = clinVars_df, # data.frame needs to␣

↪summarize (must has row names of samples)
strata = "Subtype", # stratifying variable (e.g.

↪, Subtype in this example)
# factorVars = c("ajcc_pathologic_stage"), #␣

↪features that are considered categorical variables
factorVars = c("ajcc_pathologic_stage",␣

↪"ajcc_pathologic_t", "ajcc_pathologic_n", "ajcc_pathologic_m"), # features␣
↪that are considered categorical variables

nonnormalVars = "age_at_diagnosis", # feature(s) that␣
↪are considered using nonparametric test

exactVars = NULL, # feature(s) that are considered␣
↪using exact test

doWord = FALSE, # generate .docx file in local␣
↪path

tab.name = "SUMMARIZATION OF CLINICAL FEATURES")
clin.brca

A data.frame: 6 x 5

ajcc_pathologic_stage ajcc_pathologic_t ajcc_pathologic_n ajcc_pathologic_m age_at_diagnosis
<fct> <fct> <fct> <fct> <int>

TCGA-A1-A0SH Stage IIA T2 N0 (i-) M0 14595
TCGA-A1-A0SJ Stage IIIA T3 N1a M0 14383
TCGA-A1-A0SK Stage IIA T2 N0 (i-) M0 20048
TCGA-A1-A0SO Stage IIB T2 N1 M0 24826
TCGA-A2-A04N Stage IA T1c N0 (i-) M0 24155
TCGA-A2-A04P Stage IIIC T2 N3c M0 13238

--all samples matched.

Registered S3 methods overwritten by 'proxy':
method from
print.registry_field registry
print.registry_entry registry
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$compTab =A data.frame: 40 x 8

level CS1 CS2 CS3 CS4 p test
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
n 121 68 76 78
ajcc_pathologic_stage (%) Stage I 15 (12.6) 5 ( 7.5) 9 (12.0) 3 ( 3.9) 0.069 exact

Stage IA 9 ( 7.6) 6 ( 9.0) 6 ( 8.0) 3 ( 3.9)
Stage IB 1 ( 0.8) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0)
Stage IIA 35 (29.4) 32 (47.8) 23 (30.7) 22 (28.6)
Stage IIB 24 (20.2) 13 (19.4) 20 (26.7) 18 (23.4)
Stage IIIA 24 (20.2) 5 ( 7.5) 9 (12.0) 16 (20.8)
Stage IIIB 2 ( 1.7) 1 ( 1.5) 3 ( 4.0) 2 ( 2.6)
Stage IIIC 4 ( 3.4) 3 ( 4.5) 1 ( 1.3) 7 ( 9.1)
Stage IV 3 ( 2.5) 2 ( 3.0) 1 ( 1.3) 6 ( 7.8)
Stage X 2 ( 1.7) 0 ( 0.0) 3 ( 4.0) 0 ( 0.0)

ajcc_pathologic_t (%) T1 4 ( 3.3) 4 ( 5.9) 2 ( 2.6) 3 ( 3.8) 0.071 exact
T1b 2 ( 1.7) 0 ( 0.0) 3 ( 3.9) 1 ( 1.3)
T1c 32 (26.4) 10 (14.7) 14 (18.4) 6 ( 7.7)
T2 58 (47.9) 46 (67.6) 44 (57.9) 51 (65.4)
T2b 0 ( 0.0) 0 ( 0.0) 0 ( 0.0) 1 ( 1.3)
T3 19 (15.7) 7 (10.3) 8 (10.5) 12 (15.4)
T4 1 ( 0.8) 1 ( 1.5) 1 ( 1.3) 2 ( 2.6)
T4b 5 ( 4.1) 0 ( 0.0) 3 ( 3.9) 1 ( 1.3)
T4d 0 ( 0.0) 0 ( 0.0) 0 ( 0.0) 1 ( 1.3)
TX 0 ( 0.0) 0 ( 0.0) 1 ( 1.3) 0 ( 0.0)

ajcc_pathologic_n (%) N0 22 (18.2) 25 (36.8) 21 (27.6) 14 (17.9) 0.003 exact
N0 (i-) 24 (19.8) 18 (26.5) 16 (21.1) 11 (14.1)
N0 (i+) 9 ( 7.4) 1 ( 1.5) 2 ( 2.6) 0 ( 0.0)
N1 9 ( 7.4) 9 (13.2) 8 (10.5) 12 (15.4)
N1a 22 (18.2) 3 ( 4.4) 13 (17.1) 12 (15.4)
N1b 1 ( 0.8) 4 ( 5.9) 2 ( 2.6) 0 ( 0.0)
N1c 1 ( 0.8) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0)
N1mi 5 ( 4.1) 1 ( 1.5) 2 ( 2.6) 2 ( 2.6)
N2 9 ( 7.4) 2 ( 2.9) 5 ( 6.6) 8 (10.3)
N2a 10 ( 8.3) 1 ( 1.5) 1 ( 1.3) 8 (10.3)
N3 2 ( 1.7) 1 ( 1.5) 1 ( 1.3) 4 ( 5.1)
N3a 6 ( 5.0) 2 ( 2.9) 2 ( 2.6) 5 ( 6.4)
N3c 0 ( 0.0) 1 ( 1.5) 0 ( 0.0) 0 ( 0.0)
NX 1 ( 0.8) 0 ( 0.0) 3 ( 3.9) 2 ( 2.6)

ajcc_pathologic_m (%) cM0 (i+) 1 ( 0.8) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0) 0.320 exact
M0 116 (95.9) 66 (97.1) 71 (93.4) 71 (91.0)
M1 3 ( 2.5) 2 ( 2.9) 2 ( 2.6) 6 ( 7.7)
MX 1 ( 0.8) 0 ( 0.0) 3 ( 3.9) 1 ( 1.3)

age_at_diagnosis (median [IQR]) 20597.50 [17642.75, 24013.25] 19000.50 [16355.00, 21961.25] 23565.00 [20934.00, 25848.00] 21856.00 [19266.00, 24493.00] <0.001 nonnorm

9.3 Compare with PAM50 Subtypes
We can use the compAgree function to compare our identified subtypes with the traditional PAM50
classifier. This will compute the Rand Index, Jaccard Index, Fowlkes-Mallows, and Normalized Mu-
tual Information for agreement of two partitions, and generate an alluvial diagram for visualization.
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[28]: # compare agreement with other subtypes
sub_df = data.frame(

BRCA_Subtype_PAM50 =␣
↪brca_dat[["clinical"]][,c("BRCA_Subtype_PAM50")])

rownames(sub_df) = brca_dat[["clinical"]][,c("bcr_patient_barcode")]
head(sub_df)

# agreement comparison (support up to 6 classifications include current subtype)
agree.brca <- compAgree(moic.res = cmoic.brca,

subt2comp = sub_df,
doPlot = TRUE,
box.width = 0.2,
fig.name = "AGREEMENT OF CONSENSUSMOIC WITH PAM50␣

↪Subtype")

A data.frame: 6 x 1

BRCA_Subtype_PAM50
<fct>

TCGA-A1-A0SH LumA
TCGA-A1-A0SJ LumA
TCGA-A1-A0SK Basal
TCGA-A1-A0SO Basal
TCGA-A2-A04N LumA
TCGA-A2-A04P Basal

--all samples matched.
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9.4 Other Functions in the COMP Module
MOVICS provides additional functionality to compare the subtypes. I’ve outlined them below:

• Mutational frequency: compMut()
– applies Fisher’s exact test or 𝜒2 tests for each mutation; also provides OncoPrint

• Total mutation burden: compTMB()
– TMB is the number of mutations that are found in tumor genome; useful for character-

izing the genomic make-up of tumors
• Fraction genome altered (FGA): compFGA()

– FGA is the percentage of genome that has been affected by copy number gains or losses;
also separated into specific gain (FGG) or loss (FGL) per sample; also helps characterize
the genomic make-up of the tumor

• Drug sensitivity: compDrugsen()
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– refers to R package pRRophetic to predict clinical chemotherapeutic response from tu-
mor gene expression levels (Geeleher 2014)

10 Analyzing Subtypes for Predictive Biomarkers and Functional
Pathways: RUN Module

We can now examine the omic-profiles of our subtypes to identify potential predictive biomarkers
and functional pathways.

10.1 Differential Expression (DE)
We will start with a differential expression analysis (DE). MOVICS provides 3 methods: edgeR
and DESeq2 for RNA-Seq count data; and limma for microarray profile or normalized expression
data. The function runDEA will output several .txt files storing differential expression analysis
results by specified algorithm into the directory we specify (or working directory by default) with
a string denoted by the prefix argument. We will reference this prefix in the following commands
to identify these files. Each identified cancer subtype will be compared with the rest (Others).

Since our RNA expression data comes from a microarray, we’ll use limma.

Note: since runDEA() checks the data scale automatically when choosing limma al-
gorithm, it is recommended to provide a microarray expression profile or normalized
expression data (e.g., RSEM, FPKM, TPM) without z-score or log2 transformation.

[29]: # run DEA with limma
runDEA(dea.method = "limma",

expr = brca_dat[["MO"]][["Expression"]], # normalized expression␣
↪data

moic.res = cmoic.brca,
overwt = T,
res.path = getwd(), # path to save marker files
prefix = "de_TCGA-BRCA")

--all samples matched.

--you choose limma and please make sure a microarray profile or a normalized
expression data [FPKM or TPM without log2 transformation is recommended] was
provided.

--expression profile seems to have been standardised (z-score or log
transformation), no more action will be performed.

limma of CS1_vs_Others done…
limma of CS2_vs_Others done…
limma of CS3_vs_Others done…
limma of CS4_vs_Others done…
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10.2 Biomarker Identification
Now, we’ll identify significantly overexpressed and underexpressed genes for each subtype with
runMarker(). In this procedure, the most differentially expressed genes sorted by log2FoldChange
are chosen as the biomarkers for each subtype (200 biomarkers for each subtype by default). These
biomarkers should pass the significance threshold (e.g., nominal p-value < 0.05 and adjusted p-value
< 0.05) and must not overlap with any biomarkers identified for other subtypes. Top markers will
be chosen to generate a template so as to run nearest template prediction for subtype verification.

The function will output the following:

• A figure of subtype-specific marker heatmap (.pdf) if doPlot = TRUE

and a list with the following components:

• unqlist: a string vector storing the unique marker across all subtypes

• templates: a data.frame storing the the template information for nearest template prediction,
which is used for verification in external cohort

• dirct: a string value indicating the direction for identifying subtype-specific markers

• heatmap: a complexheatmap object

[30]: # choose limma result to identify subtype-specific DOWN-regulated biomarkers
marker.dn <- runMarker(moic.res = cmoic.brca,

dea.method = "limma",
prefix = "de_TCGA-BRCA",
dirct = "down",
dat.path = getwd(),
res.path = getwd(),
p.cutoff = 0.05, # p cutoff to identify significant␣

↪DEGs
p.adj.cutoff = 0.05, # padj cutoff to identify␣

↪significant DEGs
n.marker = 200, # number of biomarkers for each␣

↪subtype
doplot = T,
annCol = annCol,
annColors = annColors,
norm.expr = brca_dat[["MO"]][["Expression"]],
fig.name = "UPREGULATED BIOMARKER HEATMAP")

--all samples matched.

--expression profile seems to have been standardised (z-score or log
transformation), no more action will be performed.
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[31]: # subtype-specific UP-regulated biomarkers
marker.up <- runMarker(moic.res = cmoic.brca,

dea.method = "limma",
prefix = "de_TCGA-BRCA",
dirct = "up",
dat.path = getwd(),
res.path = getwd(),
p.cutoff = 0.05, # p cutoff to identify significant␣

↪DEGs
p.adj.cutoff = 0.05, # padj cutoff to identify␣

↪significant DEGs
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n.marker = 200, # number of biomarkers for each␣
↪subtype

doplot = T,
annCol = annCol,
annColors = annColors,
norm.expr = brca_dat[["MO"]][["Expression"]],
fig.name = "UPREGULATED BIOMARKER HEATMAP")

--all samples matched.

--expression profile seems to have been standardised (z-score or log
transformation), no more action will be performed.
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10.3 Gene Set Enrichment
Now, we’ll use runGSEA to perform gene set enrichment for our up- and down-regulated
genes to identify subtype-specific (overexpressed or downexpressed) functional pathways.
We’ll use the background gene list (from Molecular Signature Database http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp; “MSigDB”) provided by the MOVICS package, but you can
download your own. You just need to specify the ABSOLUTE path for the file.

Here, we’ll identify specific pathways that pass a significance threshold with nominal p-value <
0.05 and adjusted p-value < 0.25, and must not overlap with any pathways identified for other
subtypes. After having the subtype-specific pathways, genes that are inside the pathways are
retrieved to calculate a single sample enrichment score by using GSVA R package. Subsequently,
subtype-specific enrichment score will be represented by the mean or median (mean by default)
value within the subtype, and will be further visualized by diagonal heatmap.

There are arguments to specify the method the minimum and maximum sizes to identify gene sets
(by default: minGSSize = 10 and maxGSSize = 500). Additionally, you can chose from a couple of
different methods to estimate gene-set enrichment scores (gsva.method, input choice as string). By
default this is set to gsva (Hänzelmann et al, 2013) and other options are ssgsea (Barbie et al, 2009),
zscore (Lee et al, 2008) or plage (Tomfohr et al, 2005). The latter two standardize first expression
profiles into z-scores over the samples and, in the case of zscore, it combines them together as their
sum divided by the square-root of the size of the gene set, while in the case of plage they are used
to calculate the singular value decomposition (SVD) over the genes in the gene set and use the
coefficients of the first right-singular vector as pathway activity profile.

The function will output the folowing:

• A figure of subtype-specific pathway heatmap (.pdf) and a list with the following components:

– gsea.list: a list storing gsea object returned by GSEA for each subtype

– raw.es: a data.frame storing raw enrichment score of identified subtype-specific pathways
by using specified gsva.method

– scaled.es: a data.frame storing z-scored enrichment score of identified subtype-specific
pathways by using specified gsva.method

– grouped.es: a data.frame storing grouped enrichment score (mean or median value
among each subtype) by using specified norm.method

– heatmap: a complexheatmap object.

[32]: # MUST locate ABSOLUTE path of msigdb file
MSIGDB.FILE <- system.file("extdata", "c5.bp.v7.1.symbols.xls", package =␣

↪"MOVICS", mustWork = TRUE)

# # run GSEA to identify DOWN-regulated GO pathways using results from edgeR
gsea.down <- runGSEA(moic.res = cmoic.brca,

dea.method = "limma", # name of DEA method
prefix = "de_TCGA-BRCA", # MUST be the same of␣

↪argument in runDEA()
dat.path = getwd(), # path of DEA files
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res.path = getwd(), # path to save GSEA files
msigdb.path = MSIGDB.FILE, # MUST be the ABSOLUTE path of␣

↪msigdb file
norm.expr = brca_dat[["MO"]][["Expression"]], # use␣

↪normalized expression to calculate enrichment score
dirct = "down", # direction of dysregulation in␣

↪pathway
p.cutoff = 0.05, # p cutoff to identify significant␣

↪pathways
p.adj.cutoff = 0.25, # padj cutoff to identify significant␣

↪pathways
gsva.method = "gsva", # method to calculate single sample␣

↪enrichment score
norm.method = "mean", # normalization method to calculate␣

↪subtype-specific enrichment score
fig.name = "DOWNREGULATED PATHWAY HEATMAP")

--all samples matched.

GSEA done…

--expression profile seems to have been standardised (z-score or log
transformation), no more action will be performed.

Estimating GSVA scores for 24 gene sets.
Estimating ECDFs with Gaussian kernels

|======================================================================| 100%

gsva done…

heatmap done…
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Let’s check some columns of GSEA results for the second subtype (CS2):

[34]: data.frame(gsea.down$gsea.list$CS2[1:6,3:6])

A data.frame: 6 x 4

setSize enrichmentScore NES pvalue
<int> <dbl> <dbl> <dbl>

GO_CYTOSKELETON_ORGANIZATION 31 0.5421869 2.115719 0.002557545
GO_SKIN_DEVELOPMENT 35 0.5103554 2.051376 0.002570694

GO_EPIDERMIS_DEVELOPMENT 40 0.4854447 2.001070 0.002597403
GO_KERATINIZATION 21 0.5686062 1.999748 0.002512563
GO_CORNIFICATION 19 0.5887244 1.983654 0.002538071

GO_CELLULAR_PROCESS_INVOLVED_IN_REPRODUCTION_IN_MULTICELLULAR_ORGANISM 22 0.5638868 1.980757 0.002645503

Let’s also look at the results of subtype-specific enrichment scores:
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[35]: head(round(gsea.down$grouped.es,3))

A data.frame: 6 x 4

CS1 CS2 CS3 CS4
<dbl> <dbl> <dbl> <dbl>

GO_BRANCHING_MORPHOGENESIS_OF_AN_EPITHELIAL_TUBE 0.249 -0.907 0.333 0.175
GO_EPITHELIAL_CELL_DEVELOPMENT 0.010 -0.816 0.693 0.005

GO_HORMONE_MEDIATED_SIGNALING_PATHWAY 0.204 -0.814 0.556 -0.187
GO_INTRACELLULAR_RECEPTOR_SIGNALING_PATHWAY 0.190 -0.709 0.395 -0.104

GO_EPIDERMIS_DEVELOPMENT 0.038 0.853 -0.718 -0.098
GO_SKIN_DEVELOPMENT 0.016 0.852 -0.712 -0.085

[33]: # # run GSEA to identify up-regulated GO pathways using results from limma
gsea.up <- runGSEA(moic.res = cmoic.brca,

dea.method = "limma", # name of DEA method
prefix = "detesting_TCGA-BRCA", # MUST be the same of␣

↪argument in runDEA()
dat.path = getwd(), # path of DEA files
res.path = getwd(), # path to save GSEA files
msigdb.path = MSIGDB.FILE, # MUST be the ABSOLUTE path of␣

↪msigdb file
norm.expr = brca_dat[["MO"]][["Expression"]], # use␣

↪normalized expression to calculate enrichment score
dirct = "up", # direction of dysregulation in pathway
p.cutoff = 0.05, # p cutoff to identify significant␣

↪pathways
p.adj.cutoff = 0.25, # padj cutoff to identify significant␣

↪pathways
gsva.method = "gsva", # method to calculate single sample␣

↪enrichment score
norm.method = "mean", # normalization method to calculate␣

↪subtype-specific enrichment score
fig.name = "UPREGULATED PATHWAY HEATMAP")

--all samples matched.

GSEA done…

--expression profile seems to have been standardised (z-score or log
transformation), no more action will be performed.

Estimating GSVA scores for 27 gene sets.
Estimating ECDFs with Gaussian kernels

|======================================================================| 100%

gsva done…

heatmap done…
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10.4 Gene Set Variation Analysis
Now, we’ll run gene set variation analysis with runGSVA to calculate enrichment scores of each
sample in each subtype based on given gene set list of interest. For all the new defined molecular
subtypes, we can depict their characteristics with different signatures of gene sets.

Again, we’ll just use the gene list provided by the MOVICS package, but you can use your own by
specifying its absolute file path.

For the normalized expression data (norm.expr), you provide a matrix of normalized expression data
with rows for genes and columns for samples, and FPKM or TPM without log2 transformation is
recommended. You can also change the linkage and distance (by default, ward.D and euclidean)
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for the hierarchical clustering, if you wish.

[36]: # MUST locate ABSOLUTE path of gene set file
GSET.FILE <-

system.file("extdata", "gene sets of interest.gmt", package = "MOVICS",␣
↪mustWork = TRUE)

# run GSVA to estimate single sample enrichment score based on given gene set␣
↪of interest

gsva.res <-
runGSVA(moic.res = cmoic.brca,

norm.expr = brca_dat[["MO"]][["Expression"]],
gset.gmt.path = GSET.FILE, # ABSOLUTE path of gene set file
gsva.method = "gsva", # method to calculate single sample␣

↪enrichment score
annCol = annCol,
annColors = annColors,
fig.path = getwd(),
fig.name = "GENE SETS OF INTEREST HEATMAP",
height = 5,
width = 10)

--all samples matched.

--expression profile seems to have been standardised (z-score or log
transformation), no more action will be performed.

Warning message in .gsva(expr, mapped.gset.idx.list, method, kcdf, rnaseq,
abs.ranking, :
"Some gene sets have size one. Consider setting 'min.sz > 1'."

Estimating GSVA scores for 15 gene sets.
Estimating ECDFs with Gaussian kernels

|======================================================================| 100%

gsva done…
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[37]: message("check raw enrichment score")
gsva.res$raw.es[1:3,1:3]

message("check z-scored and truncated enrichment score")
gsva.res$scaled.es[1:3,1:3]

check raw enrichment score

Amatrix: 3 x 3 of type dbl

TCGA-A1-A0SH TCGA-A1-A0SJ TCGA-A1-A0SK
Adhesion -0.6987578 -0.5652174 -0.8881988

B-Cell_Functions -0.6623658 -0.5763203 -0.2251247
Cell_Functions -0.4728424 -0.4048822 -0.1318637
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check z-scored and truncated enrichment score

Amatrix: 3 x 3 of type dbl

TCGA-A1-A0SH TCGA-A1-A0SJ TCGA-A1-A0SK
Adhesion -1 -0.9281357 -1.0000000

B-Cell_Functions -1 -1.0000000 -0.4259172
Cell_Functions -1 -1.0000000 -0.3021437

11 Additional Functionality in the RUN Module
• Evaluating with external cohort

– compare the subtypes with current defined subtypes in an external cohort; this includes
2 model-free approachs for subtype prediction
∗ Nearest template prediction (NTP) runNTP: can be used cross-platform, cross-
species, and does not require optimization of analysis parameters

∗ Partition around mediods classifier runPAM(): trains a partition around medoids
(PAM) classifier with training cohort, predict subtypes in validation cohort, assign
each sample in validation cohort to subtype with centroid with the highest Pearson
correlation iwth the sample

∗ test consistency of the NTP and PAM results with runKapa()

12 Summary
In summary, today we have explored the MOVICS R package to perform unsupervised multi-
omics clustering for some gene expression, methylation, and miRNA expression data for a subset of
subjects with breast cancer from TCGA’s BRCA cohort. Using this package, we can identify the
top markers (most variable genes, probes, etc) and impute any values with knn if needed. We can
estimate the best number of clusters k we’d like to use using Gap and CPI statistics, but we should
keep in mind prior/biologic knowledge when choosing this value. To perform the clustering, we can
choose from 10 different clustering algorithms. Here, we used SNF, PINSPlus, NEMO, LRAcluster,
and IntNMF. Then, to improve the robustness of our results, we can calculate a consensus matrix
from the clusterings identified across these methods. We will then get k clusters with distinct omics
profiles.

From the consensus matrix and the identified subtypes, we can compare survival times, clinical
features, matching with other, previously-defined types, and more. We can also compare the omic
profiles of our subtypes with differential expression analysis, biomarker identification, gene set
enrichment, and gene set variation analysis.

In our example data, we found some strong correspondence between an identified subtype (CS2) and
the basal PAM50 class. This subtype appeared to have a strong signal in the mRNA expression and
DNA methylation data, with a slightly less noticeable signature in the miRNA expression. When
comparing to the other subtypes, it seemed to have the strongest signals across all omics data
types. The distinctness of this cluster was further shown in our biomarker identification analyses
and GSEA.

We also identified 2 subtypes (CS1 & 3) who had distinctly different mRNA expression profiles.
Though a bit weaker, there were also differences in the DNA methylation and miRNA expression
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profiles between the subtypes. Most of CS1 corresponded to those with Luminal A classification.
However, CS3 was a little less clear-cut and had subjects with both Luminal A and B classifications.

CS4 showed little distinct signatures in the omics profiles and a hodgepodge of the PAM50 classes.
We likely can’t characterize these subjects well with our data.

Thank you for attending this presentation and go forth and explore your own multi-omics data!
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