
 

MetaOmics Lab 
 

1 Download and install software 
1.1 Run from docker image (Recommended) 

Install docker: https://www.docker.com/  

Run command in terminal: 

• docker pull metaomics/app 
• docker run --rm --name metaOmics -p 3838:3838 metaomics/app 

Then you can access the MetaOmics pipeline by opening http://127.0.0.1:3838/metaOmics/ on 
your web browser. 

Users can check the docker container ID by bash command docker ps.  

The default working directory of the docker container is /srv/shiny-server/metaOmics/.  

To download all output after analysis, run command docker cp containerID:/srv/shiny-
server/metaOmics/local_path_to_output_folder in terminal. 

(Go to https://docs.docker.com/engine/reference/commandline/run/ or use docker run –help 
in terminal for more instructions about docker.) 

1.2 Install the app in R 

a) Download software from Github.  

Download the zip file from https://github.com/metaOmics/metaOmics by clicking on “Clone 
or download” and extract to a working directory.  

Or type git clone https://github.com/metaOmics/metaOmics in the command line under 
your working directory 

b) Open R and install “shiny” in the R console: 

 install.packages(‘shiny’), choose a CRAN mirror and install the package 

c) Starting up: 

In R, run shiny::runApp('metaOmics', port=9987, launch.browser=T) 

d) Set the working directory in the “Setting” page: 

Under “Directory for Saving Output Files”, select a local directory to automatically save the 
outputs to. 

e) Install dependent R packages of the modules: 

Under “Toolsets”, click to install the desired modules if the “status” shows “not installed”. 
The installation may take a few minutes for each module. The installation progress is 
updated in the notification icon. After modules are installed to R, restart the shiny 



 

application again so that the interface is updated with the installed modules. Now a new 
“Toolsets” tab is shown on the browser that contains all installed modules. 

However, this shiny app can be safely run in R version 3.3, but for other R version, you may 
encounter errors in installing dependencies of the modules. 

*For more details, please refer to the original MetaOmics paper reference1. 

 

2 Prepare Data 
2.1 Expression Data 

The gene-expression matrix should be prepared as tab-delimited “.txt” or comma-separated 
“.csv” files. The first column corresponds to the feature ID (e.g., gene symbol, probe ID, or 
entrez ID) and the rest of columns are the expression data from samples. The first row contains 
the sample ID. For gene expression profiling from a microarray platform, normalized log-
transformed continuous intensities are the default input format. For RNA-seq, both raw count 
data (e.g., those generated by HTSeq or bedtools) and continuous data (e.g. FPKM, RPKM or 
TPM converted using Cufflinks) are allowed. Since conversion from count data to FPKM/TPM 
requires genome annotation and other information that is constantly updated, this task is 
expected to be done by users before data input. 

2.2 Clinical Data 

The first column of clinical data set corresponds to the sample ID, and the rest of columns 
contain the clinical information of the samples (e.g., case/control labels). Sample IDs of the 
clinical data (on rows) should be ordered in the same way as the gene-expression data (on 
columns) to avoid any mismatch issues. 

2.3 Example Data 

There are 3 datasets (Verhaak, et al., 2009; Balgobind, et al., 2010; Kohlmann, et al., 2008) 
using samples from acute myeloid leukemia (AML) with three known chromosomal 
translocation subtypes as summarized in Table 1: “inv(16)” (inversions in chromosome 16), 
“t(15;17)” (translocationsbetween chromosome 15 and 17), “t(8;21)” (translocations between 
chromosome 8 and 21). These AML subtypes have been well studied with different survival, 
treatment response and prognosis outcomes. The data is under the folder 
“/data/example/leukemia”. 

Our main purpose was to demonstrate the use of the MetaClust module to simultaneously 
cluster samples of the three studies and see if the clustering can reproduce the three well-
known subtypes. Meanwhile, we will also illustrate how to use MeteQC module for quality 
control, MetaDE module for DE analysis and simple pathway analysis, as well as MetaNetwork 
for network analysis. 

 
1 Ma T, Huo Z, Kuo A, et al. MetaOmics: analysis pipeline and browser-based software suite for 
transcriptomic meta-analysis. Bioinformatics. 2019;35(9):1597-1599. doi:10.1093/bioinformatics/bty825 



 

 
 

3 Setting 
After modules are installed, restart the shiny application again so that the interface is updated 
with the installed modules. Now a new “Toolsets” tab is shown on the browser that contains all 
installed modules. 

 
 

 

 

 

 

 

Install desired modules if the 
“status” shows “not installed” 



 

4 Meta Preprocessing 
4.1 Step 1 Uploading data: 

 

 
 

4.2 Step 2 Merge datasets and make active dataset 

After uploading all studies with clinical data, turn to the Saved Data page. We are creating 3 
merged data sets with different filtering criteria 

1) Select the 3 datasets we uploaded. By (1), filter out genes with low expression level 
(here we use mean expression lower than 80th percentile) or low variance (here we use 
variance lower than 80th percentile), and name the merged data set as “merge08”. The 
merged data only keeps 206 genes. 

2) Similarly, select the 3 studies, and filter out genes with mean expression lower than 50th 
percentile or variance lower than 50th percentile. Name the merged data set as 
“merge05”, and it keeps 1283 genes 

• Go to the Preprocessing page 
• Upload expression data files or choose the existing 

saved data files by clicking (1) 
• Optionally upload clinical data by clicking (2) 
• Optionally preprocess the data for feature annotation, 

missing value imputation, and multiple probes 
reduction for the same gene in (3) 

• By clicking the “save single study” button, the gene-
expression profile will be uploaded, and the data can be 
previewed on the right side of the page. 



 

3) Select the merged data set and click (3) to set it as the active study that shows up on the 
top-right corner of the page. The active dataset serves as the input for all the analytical 
modules. 
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5 Meta Analysis 
5.1 MetaQC 

The MetaQC module provides an objective and quantitative tool to help determine the 
inclusion/exclusion of studies for meta-analysis. More specifically, MetaQC provides users with 
six quantitative quality control (QC) measures: internal homogeneity of co-expression structure 
among studies (IQC); external consistency of co-expression pattern with pathway databases 
(EQC); accuracy and consistency of differentially expressed gene detection (AQCg and CQCg) as 
well as accuracy and consistency of enriched pathway identification (AQCp and CQCp). In 
addition, visualization plots and summarization tables are generated using principal component 
analysis (PCA) biplots and standardized mean ranks (SMR) to assist in visualization and decision.  

 

 
 

 

 

 

• Go to Toolsets drop-down menu and select 
MetaQC module 

•  (1) provides the description about this module 
• Drop-down menu in (2) can perform gene 

filtering to reduce computational cost, specify 
the approach and cutoff to select potentially DE 
genes, and specify the approach and cutoff to 
select potentially enriched pathways 

• Drop-down menu in (3) can tune other 
parameters, and it is suggested not to modify 
the option setting in this section without 
knowing the method  

• Click (4) to perform MetaQC. 



 

 
Figure 1 

 

Figure 1: MetaQC Results with default parameters for merged dataset “merge05”. Figure 1 (1) 
includes seven columns, with the first six columns corresponding to the six quantitative quality 
control measures of all studies (a larger value indicates a better quality), and the seventh 
column is the rank of summary statistics of all six quality measures (a lower rank indicates a 
better quality).  

 

In addition, MetaQC also generates a PCA biplot (Figure 1 (2)) based on the six quality control 
measures, where the circled number is the study index and arrows indicate different measures. 
If a study (a circled number) is along the direction of the majority of the six QC directions, then 
the study has higher quality and is consistent with other studies. In general, if a study has larger 
standard mean rank (SMR) values, it is considered to have lower quality and is inconsistent with 
other studies. We can see here the arrows pointed to different directions and none of the 3 
studies are clear outliers. This is also reflected in the SMR values, where all the 3 studies have 
similar ranks. Therefore, we cannot exclude any study. 
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5.2 MetaDE 

The MetaDE module implements 12 major meta-analysis methods with 22 variations for 
differential expression analysis that fall into three main categories: combining p-values, 
combining effect sizes, and others (e.g., combining ranks, etc.). Depending on the type of 
outcome, the package can perform two-classes comparison, multi-class comparison, and 
association with continuous or survival outcomes. The package allows the input of either 
microarray (continuous intensity) and/or RNA-seq data (count or FPKM/RPKM) for individual 
study analysis.  

After obtaining differentially expressed (DE) genes from the differential expression analysis, 
users can further perform post-hoc pathway enrichment analysis using the declared DE genes. 

5.2.1 Differential expression analysis 

 
 

Figure 2: MetaDE results for “merge05” between group “inv(16)” (control) and “t(15,17)” 
(case). The heatmap of DE genes is rendered after specifying the FDR Cutoff for selection of DE 
genes and clicking on “Plot DE Genes Heatmap”. The image size can be adjusted by dragging 
the scrolling bar. In the heatmap, rows refer to the declared DE genes under the specified FDR 
cutoff, columns refer to samples, and solid white lines are used to separate different studies. 
The dashed white lines are used to separate groups. Colors of the cells correspond to scaled 
expression level, as indicated in the color key below. For the results generated by “AW-
Fisher∗”, there is one additional column of cross-study weight distribution on the left end of the 
heatmap, and the genes in the heatmap are sorted by their weight distribution. We can see 
that the majority of DE genes are commonly up-regulated or down-regulated (weight=1,1,1), 
indicating a generally homogeneous signal across the 3 studies. 

• Go to Toolsets drop-down menu and select 
MetaDE module 

• Click (1) to choose the type of meta-analysis 
method from: combining p-values, combining 
effect sizes and others. 

• Given the selected meta method type, choose a 
meta-analysis method from (2). 

• Click No in (3), unless the data combine both 
RNA-seq and microarray studies.  

• (4) is to specify the outcome variable, and 
control/case group label. 

• (5) specifies the data type of each individual 
study and DE analysis method. For continuous 
data (e.g., microarray), available methods 
include LIMMA (default) and SAM. For discrete 
data (e.g., RNA-seq count), available methods 
are edgeR, DESeq2, and Voom.  

• Default settings in (6) is suggested. 



 

The summary table of meta-analysis results is at the bottom, including information of test 
statistic, p-value of individual study, meta-analysis p-value, FDR, etc. 

 

 
Figure 2 

 



 

5.2.2 Pathway analysis 

Then, we can perform post-hoc pathway enrichment analysis. 

 

 
 

Figure 3: the downstream pathway analysis results based on MetaDE genes. Each row 
represents a pathway with its p-value and q-value listed on the right. 

 
Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 

• Choose the pathway database in (8) from 25 
available pathway databases. 

• In options (9), users need to choose the 
pathway method from Kolmogorov-Smirnov 
(KS) test (default option), or the Fisher’s exact 
test, and specify the minimum/maximum gene 
size of pathways to be included. 



 

5.3 MetaPath 

The MetaPath module performs pathway analysis by two advanced meta-analytic pathway 
analysis tools: Meta-Analysis for Pathway Enrichment (MAPE) and Comparative Pathway 
Integrator (CPI) (Shen et al., 2010; Fang et al., 2017). Although both MetaDE and MetaPath 
could perform pathway enrichment analysis, they are different. MetaDE only provides more 
traditional downstream pathway analysis for the functional annotation of detected DE genes 
from meta-analysis. On the other hand, MetaPath uses more comprehensive and sophisticated 
methods to jointly perform DE analysis and pathway analysis, and it provides stronger statistical 
power and more extensive and intuitive biological insights. Also, MetaPath performs additional 
pathway clustering to reduce pathway redundancy and extracts the key words from each 
cluster via the text mining algorithm to assist with the interpretation.  

 
 

• Step 1: specify (1) whether the input gene-
expression profile is a mix of continuous data 
and discrete data; (2) response type, 
case/control labels (similar to MetaDE); (3) 
individual study option (similar to MetaDE); 
(4) advanced options, including whether to 
adjust for covariates or the direction of 
hypothesis testing; (5) pathway databases for 
the enrichment analysis; (6) the method 
(either MAPE by default or CPI). Then click on 
(7) to Run Pathway Analysis. 

• Step 2: specify the top enriched pathways by 
choosing the FDR cutoff in (8). Then, run 
Pathway Clustering Diagnostics to perform 
consensus clustering analysis to determine the 
optimum number of clusters K. 

• Step 3: specify the number of clusters and click 
on (9) to get pathway clustering results. 



 

 
Figure 4 

Figure 4 is the MetaPath analysis summary of “merge05” data after Step 1 by choosing the 
method CPI.  This table shows analysis results of all pathways, including individual study 
association analysis p-value, meta pathway analysis p-value/FDR, etc. Click the p value meta 
“up arrow” button to sort these pathways and search the pathway name in the search bar. The 
full table is automatically saved in the working directory specified previously. 

 

 
Figure 5 

Figure 5 shows the results after Step 2 by setting the FDR cutoff as 0.4 which selects 27 
pathways. Both of the consensus CDF plot and  Delta area plot assist in finding the optimal 



 

number of clusters K (refer to Monti et al. (2003) for detailed interpretation of the two plots). 
To be brief, the cumulative density function (CDF) of the consensus matrix for each K (indicated 
by colors) is estimated by a histogram of 100 bins. The CDF reaches an approximate maximum, 
implying consensus and cluster confidence is at a maximum at this K. The Delta area shows the 
relative change in area under the CDF curve comparing K and K − 1, thus allowing to determine 
K at which there is no appreciable increase in CDF (which drops as the number of cluster 
increases). In the example, K = 5 is chosen since it locates at the elbow turning point (i.e., where 
the magnitude of incremental decrease in delta area diminishes) 

 

 
Figure 6 

The heatmap in Figure 6 shows the -log10 transformed p-value of enrichment analysis in each 
study from Step 3. Studies are on columns, and the selected pathways are on rows. The color 
bar on left indicates group of pathways (K=5). In the heatmap, red indicates “more enriched,” 
and yellow indicates “not significantly enriched.” The color key is on the top left corner. The 
pathways are sorted by the pathway clusters, as indicated by the colors on the left side of the 
heatmap. In addition, key words of each cluster of pathways are extracted and analyzed by a 
built-in text mining algorithm. One file named “Clustering Summary.csv” is saved to the working 
directory, which shows a summary of the text-mining results. 
 
 
 



 

5.4 MetaNetwork 

MetaNetwork aims to detect gene modules with different co-expression patterns under 
different biological conditions. We use the correlation to quantify the co-expression level. High 
correlation in a gene module, either positive or negative, means the genes inside this module 
are functionally related, which may indicate they are controlled by the same transcriptional 
regulatory program, or member of the same pathway. The module includes three steps to get 
differentially co-expressed networks, including generating networks, searching for basic 
modules, and assembling super-modules.  

5.4.1 Generate Network 

After clicking the Generate Network button, the screen will show a message indicating the 
algorithm is running to generate the network. 

 
 

5.4.2 Search for Basic Modules 

When searching for basic modules, we try multiple repeats with different seeds to avoid local 
optimum. After clicking the Search for basic modules button, the screen will show a message 
indicating the algorithm is running to search for basic modules. After this step is done, tables 
summarizing two kinds of basic modules: one highly connected in case group but loosely 
connected in control group, and the other one with reverse pattern. 

• Go to Toolsets drop-down menu and select 
MetaNetwork module 

• Select case and control group name by (1) (2). 
• Set the number of permutations in (3) that 

are used to generate the null distribution for 
edge energy and will be further used to 
calculate edge FDR. Given a reasonable 
number of edges, 3-10 permutations are 
recommended. 

• The edge cutoff in (4) determines the 
proportion of edges to be kept in the 
network. Only edges with correlations above 
this cutoff will be kept as connected. 
Decreasing the edge cutoff will result in a 
denser network and add computation time. 
We recommend starting with a large cutoff 
(looser network), especially for large 
numbers of genes and then gradually 
decreasing it (increasing network density) for 
a desirable network.  

(1) 

(2) 

(3) 

(4) 



 

 

 
 

Since MetaNetwork requires a large computing time, we use the merged leukemia data 
“merge08” (keeping 206 genes), 4 permutations, and other parameters as default. In this 
example we only compared two phenotypes: “inv(16)” and “t(15;17)”. In general, the 
MetaNetwork module is time consuming for large datasets (for both the Generate Network 
and Search for basic modules steps). We should carefully restrict the number of genes (e.g., 
less than a thousand) for a test run before applying them to a large gene set. After the 
Generate Network step completes, no output will show up on the screen. Instead, a message 
box will show up indicating several .Rdata files are saved in the MetaNetwork folder under the 
working directory. After the Search for basic modules step is done, the screen will show a table 
of basic modules higher correlated in case or control, as in Figure 4.  

 

• Advanced options are recommended not to 
change (including the number of repeats 
used for each initial seed modules, the 
maximum Monte Carlo steps for the 
simulated annealing algorithm, and the 
maximum pairwise Jaccard index allowed for 
basic modules). 



 

 

  
Figure 7 

Figure 7: MetaNetwork output from Search for basic modules step, summarizing two kinds of 
basic modules: one highly connected in cases but loosely connected in control (labeled as 
H1, . . ., H11), and the other one with reverse pattern (labeled as L1, . . ., L9). The actual gene 
sets are listed for each basic module.  

 

 

 

 

 



 

5.4.3 Assemble Supermodules 

 
After the Assemble supermodules complete, the screen will show a table of super-modules 
(Figure 5). Users can also select basic modules to plot (Figure 6). Meanwhile, in the 
MetaNetwork folder under the working directory, the files of top super-modules in text format 
designed to input to a Cytoscape plug-in “MetaDCNExplorer” 
(http://tsenglab.biostat.pitt.edu/software.htm) are automatically generated for improved 
visualization and dynamic exploration.  

 
Figure 8 

Figure 8: MetaNetwork supermodules table. The second column shows the pathway size. The 
third and fourth column show the p-value and q-value of the detected supermodule. The last 
column is the size of the supermodule. 

• Decide the FDR Cutoff to select basic 
modules for super-module assembly. 

• After clicking Assemble supermodules 
button, the screen will show message 
indicating the algorithm is running to 
assemble supermodules. A table for basic 
modules, supermodules, and their network 
visualization will be shown on the right panel 
of the screen. 



 

 

 
Figure 9 

Figure 9: MetaNetwork select basic modules to plot. Each dot represents a gene. An edge 
represents the two genes are highly correlated. The network density is marked on top of each 
network. The top module show higher correlation in “inv(16)” over all the 3 individual studies, 
and the bottom module show high correlation in “t(15:17)” for all the 3 studies. 



 

5.5 MetaClust 

MetaClust module aims to perform sample clustering analysis combining multiple 
transcriptomic studies while ignoring the outcome labels. The resulting clustering from meta-
analysis is more robust and accurate than single study analysis. It includes two optional steps 
before running meta sparse K-means clustering: tune K (the number of clusters) and tune 
Wbound (for feature selection) by gap statistic.  

We used the merged leukemia data “merge05” again to demonstrate the MetaClust module. 
The clusters are well separated in each study based on the unified feature selected across all 
studies, and the cluster patterns are consistent across the studies.  

 

5.5.1 Tune K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Go to Toolsets drop-down menu and select MetaClust module 
• (1) specifies the maximum number of K 
• Use the top (3) percentage large variance genes to perform Gap 

statistics 
• At least 50 bootstrap samples in (4) are suggested for a stable 

result. 
• Click button Tune K, and (5) is the tuning results. A good K is 

selected such that the 𝐺𝑎𝑝! is maximized or stabilized across all 
studies. From the figure, K = 3 is preferred since the gap 
statistics from all three studies become flat. 



 

5.5.2 Tune Wbound 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.3 Run meta sparse K-means 

Based on the results of Tune K and Tune wbounds, Run Meta Sparse K-Means by specifying the 
number of clusters as 3 in (1), wbounds as 24 in (2), and leaving the advanced options (3) (4) by 
default. The results of heatmap (6) on top shows the gene-expression profiles of the three 
studies with selected features. Each row represents a gene, and each column represents a 
sample. Note that the three studies share a common set of genes. The color bar on top of the 
heatmap represents the subtype labels. For instance, the black bar on top of each study 
represents the same subtype for all studies. Clearly, we could see distinct subtype patterns, and 
these patterns are consistent across studies.  

 

 

 

 

 

 

 

 

 

• (1) specifies the number of clusters (obtained from last step) for 
tuning Wbound 

• Leave the advanced option (2) as default, and change the 
searching range of wbounds between 20 and 30 by step 2 on (3) 

• (5) shows the results. Wbound=24 is preferred since the 
corresponding Gap statistic is maximized. 
 



 

5.6 MetaPredict 

The MetaPredict module combines multiple transcriptomic studies to build a prediction model 
and shows improved prediction accuracy as compared to single study analysis. Top scoring pairs 
(TSP) is a robust algorithm for predicting gene-expression profiles, which adopts non-
parametric rank-based prediction rule. The MetaPredict is a meta-analysis version of the TSP 
algorithm that combines multiple transcriptomic studies to build a prediction model and shows 
improved prediction accuracy as compared to single study analysis. By clicking the Toolsets tab 
and then choosing MetaPredict, we are directed to the MetaPredict homepage. 

 

• Step 1: first specify (1), (2), (3) under the 
Advanced Options to decide a method to 
select K top scoring gene pairs from 
multiple studies, the maximum number of 
top scoring pairs K (algorithm will search 
from 1 up to K with default K = 29) and the 
number of cores for parallel computing. 
Then click on (4) to choose two labels and 
select the dataset as training data and 
testing on (5) and (6) respectively. Click 
the Train model button to build prediction 
model.  

• Step 2: decide the K on (7) based on the 
diagnostic plot generated in Step 1 where 
the suggested value is shown as a green 
arrow. Then predict the class label of 
testing data. Finally, a confusion matrix is 
output to show the prediction results. 



 

 

 
Figure 10 

Figure 10 shows the results of “merge05” data after Step 1 that uses the “study1.csv” and 
“study2.csv” for training and “study3.csv” for testing to predict between two labels “inv(16)” 
and “t(8;21)”. The upper part lists the top predictive pairs of genes. A score measures the 
correlation between the pairs of genes. The bottom plot guides selection of K by maximizing 
variance optimizaiton (VO) t statistics. The x-axis is the number of top scoring pairs K, and the y-
axis is the variance optimization (VO) t-statistics. 



 

Based on the diagnostic plot showing the optimum K=12 in Figure 10, a confusion matrix is 
output after Step 2, showing the prediction results as below. The prediction results are also 
saved in the working directory. 

 
 

 

5.7 MetaPCA 

MetaPCA module aims to combine multiple omics datasets and perform simultaneous 
dimensional reduction in all studies. The results show improved accuracy, robustness, and 
better interpretation among all studies. There are two methods: SSC represents MetaPCA via 
sum of squared cosine (SSC) maximization; SV represents MetaPCA via sum of variance 
decomposition (SV). By clicking the Toolsets tab and then choosing MetaPCA, we are directed 
to the MetaPCA homepage.  

 
 

Figure 11 shows the MetaPCA result based on “merge05” data. The x-axis (horizontal) is the 
first principal component, and the y-axis (vertical) is the second principal component. Each dot 
represents a sample in a study with the sample label marked to the top right of the figure. The 
figures show nice separations between three groups. These figures and eigenvectors are saved 
to the MetaPCA folder. 

• Specify the method (SSC is suggested) 
on (1), and the dimension of the output 
meta-eigenvector matrix on (2).  

• The checkbox of “Dimension 
determined by variance quantile” (3) is 
suggested to be checked so that the 
dimension size of each study’s 
eigenvector matrix (SSC) is determined 
by the pre-defined level of variance 
quantile 80%. Checking checkbox of 
“Enforce Sparsity” (4) will need to first 
tune parameter for sparsity before Run 
meta PCA.  



 

 
 
  

Figure 11 


