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Housekeeping

* Questions
* Ask questions 1n chat
* One lecturer will teach,

other lecturers will monitor
the chat

* You can also send questions
privately to a particular
lecturer 1f you prefer

* Video recording

* Videos recording will be shared
through Section on Statistics
in genomics and genetics

e Gi1itHub site:

https://github.com/KechrisLab/ASAShortCourse-MultiOmics

e Break

e We will have a 5 minutes break
for each lecture.




Short Course Overview

e Multi-omics studies now common in small groups + large consortium studies
* Many statistical and computational challenges
Learning objectives

1. Learn about the landscape of multi-omics problems and analysis methods.
2. Understand some of the theoretical justification behind selected multi-omics

methods.
3. Gain hands-on experience with multi-omics analysis software and data

applications.
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Short Course Overview

* Prerequisites: basic knowledge of statistics, molecular biology,
genetics, and familiarity with R programming
* Each session has 2 parts

* 18t part: motivation, basic principles, representative tools, and examples

e 2nd part: real-time lab session - provide hands-on experience and lasting take-

home messages

e [ ab sessions:

* Reproducible examples, relevant data and annotated code through GitHub
(https://github.com/KechrisLab/AS AShortCourse-MultiOmics)

 Can practice within class or review at their own pace after the short course.
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* Lecture 1 (Wenjia Wang) * Lecture 3 (Jack Pattee)
* Brief introduction * Dimension reduction for
= Example method: multi-omics data
MetaOmics * Example method: JIVE
" Lecture 2 (Sierra Niemiec) " Lecture 4 (Rick Chang)
* Unsupervised clustering of * Multi-omics causal
multi-omics data mediation analysis
» Example method: = Single cell multi-omics
MOVICS analysis

* Example methods: HIMA,
Seurat
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SSGG Short Course Series:

Selective Introduction of Multi-Omics Analysis

Lecture 1
Overview of Multi-Omics Data Analysis and
Horizontal Data Integration

April 11,2023

Instructor: George Tseng

A- f ; A ‘l Wenjia Wang
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I. Background of Multi-Omics Data Integration
a) Why integrate omics data?
b) Multi-omics data source
¢) Common analysis themes and examples

d) Overview of omics data integration

II. Methods for Vertical Multi-Omics Data Integration

a) Parallel integration approaches

b) Hierarchical integration approaches
II1. Horizontal Omics Data Integration

IV. Lab Session: MetaOmics

AS All Section on Statistics in

Genomics and Genetics



Why Integrate Omics Data?

e Use of two or more omics data sets

W% ‘:
(e.g., epigenomics, transcriptomics, £ " 5
metabolomi 5 =2
cubolomies) R
* Confirm or gain new insights that 5 :
. . . — : Healthy
may not be possible using single- £ -, f
omics data E | ;
. . 2 | ' :N
* Attain systems perspective for 2 1/ protedte? ;
biological processes and disease E : SU—
mechanisms | ﬁtabo,m / | Disease
Sun & Hu (2016) Advances in Genetics
10 ASA' Section on Statistics in
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Why Integrate Omics Data?

@ Bone

@ Cancer

@ Cardiovascular
@ Connective tissue
@ Dermatological
@ Developmental
O Ear, nose, throat
(O Endocrine

(O Gastrointestinal
@ Hematological
© Immunological
@ Metabolic

@ Muscular

@ Neurological

@ Nutritional

@ Ophthamological
@ Psychiatric

@ Renal

@ Respiratory

@ Skeletal

@ muttiple

O Unclassified

Metabolomes

N- Dimensional Systems Integration

Genomes

Section on Statistics in
Genomics and Genetics

11 Slides for statistical machine learning short course in Sixth Seattle Symposium in Biostatistics by Ali Shojaie. ASA“



Public Data Sources

Table 1. List of multi-omics data repositories.

DATA REPOSITORY WEB LINK DISEASE TYPES OF MULTI-OMICS DATA AVAILABLE

The Cancer Genome Atlas https://cancergenome.nih.gov/  Cancer RNA-Seq, DNA-Seq, miRNA-Seq, SNV,

(TCGA) CNV, DNA methvlation, and RPPA

Clinical Proteomic Tumor Analysis  https://cptac-data-portal. Cancer Proteomics data corresponding to TCGA

Consortium (CPTAC) georgetown.edu/cptacPublic/ cohorts

International Cancer Genomics https://icgc.org/ Cancer Whole genome sequencing, genomic

Consortium (ICGC) variations data (somatic and germline
mutation)

Cancer Cell Line Encyclopedia https://portals.broadinstitute. Cancer cell line Gene expression, copy number, and

(CCLE) org/ccle sequencing data; pharmacological
profiles of 24 anticancer drugs

Molecular Taxonomy of Breast http://molonc.bccre.ca/ Breast cancer Clinical traits, gene expression, SNP, and

Cancer International Consortium aparicio-lab/research/ CNV

(METABRIC) metabric/

TARGET https://ocg.cancer.gov/ Pediatric cancers Gene expression, miRNA expression,

programs/target copy number, and sequencing data
Omics Discovery Index https://www.omicsdi.org Consolidated data sets Genomics, transcriptomics, proteomics,

from 11 repositories in a and metabolomics
uniform framework

Abbreviations: CNV, copy number variation; miRNA, microRNA; RPPA, reverse phase protein array; SNP, single-nucleotide polymorphism; SNV, single-nucleotide variant.

. - . . - \; Section on Statistics in
Subramanian et al. (2020) Bioinformatics and Biology insights ASA'. C e
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Types of Multi-Omics Data Analysis

Experimental design |~ N

Preprocessmg

Association analys1s
Dimension reductlon

Clusterlng Gene set enrichment

analy31s

Clas&ﬁca‘uon Regulatory network
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of Multi-Omics Data Analysis
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Features

Types of Multi-Omics Data Analysis
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1.

Omics 1

When to Integrate?

Early integration
(concatenated or separated)

Multi-Omics
Result

Analysis
ANk  E—

2. Late integration
(analyze separately, then integrate)

‘ ’ ‘ Single-Omics
Specific Results
K )
f

Multi-Omics
Result

ASA“l Section on Statistics in
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Horizontal Multi-Omics Integration

Combine [fCrossdab
microarray§ Cross-sample cohort
studies Cross-platform

Agilent Affymetrix

WordatPatetin
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 Same kind of omics data on K
different samples or subject

cohorts (GWAS, gene expression,
methylation, eQTL...)

* Increase statistical power and

generate robust discoveries
D, D, oo | Dk
LECTURE 1: Combining multiple genomic
Snga?I::)Sl:s SGs%z:;sl:s S amples studies for horizontal meta-analysis and data

integration (MetaOmics)

Tseng et al. (2012) Nucleic Acids Res.
17 ASAIl Section on Statistics in

Genomics and Genetics




Vertical Multi-Omics Integration

AACACGCCA...TTC GTC: : -
AACACGCCA...TTC GTC: « %
AACATECCA...TTC GTC. ..
AACACECCA...TTC GTC. ..
.° & -
% . [+} A ¥

demographic variables,
P cal traits,
biochemical traits,
clinical variables

G1 SNPX
S samples

G, gene expression x E
S samples 2

G,, miRNAx =
S samples H

18

* Same samples or subject
cohort analyzed using
different omics technology

* Understand the complex
biology and diseases
systematically and
holistically

Tseng et al. (2012) Nucleic Acids Res. G Sesen e SEEEs in

Genomics and Genetics
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II. Methods for Vertical Multi-Omics Data Integration

a) Parallel integration approaches

b) Hierarchical integration approaches

ASAY,

Section on Statistics in
Genomics and Genetics




Vertical Multi-Omics Integration

n samples

p; features p, features p; features p: features

DNA (CNV,
DNA(CNV,
methylation and mRNA
mulation status)

* Parallel integration
treat omics ¥
measurements from
different platforms * Hierarchical integration
equally - can more closely reflect

* Most methods are

the biological nature of

methylation and

T

P,

mutation status)

l p, features
/ MRNA * Hierarchical integration
incorporates prior
l”3 S knowledge of regulatory
relationship among
| different omics data

T

parallel, since it can be  Parallel Integration A multidimensional data
easily generalized to but it lacks ,
arbitrary number & Vertical Integration Scheme: el b

types of omics data. Parallel vs Hierarchical Integration

ASA' Section on Statistics in
20 Wu et al. (2019). High Throughput; Hasin et al. (2017). Genome Biology. U Genomics and Genetics



Parallel Multi-Omics Integration

= Similarity Network Fusion method (SNF) uses networks of samples as a basis for integration to cluster the samples.

a Original data b Patient similarity matrices C Patient similarity networks Fusion iterations e s.;:;i?yp::ti/rgrk LECTURE 2 . C lust erin g
mRNA expression Patients O O\ .
EE , 0o &P O@ O’O of Samples (MOVICS)
| )
: P O@ %O

Patients
Patients

Patients \ /
DNA methylation O
- o : \ ”//////

mRNA-based = ——— DNA methylation—based

O Patients Patient similarity: Supported by all data

Instructor: Sierra Niemiec

= Joint and Individual Variation Explained (JIVE) decomposes the concatenated data into a sum of three terms: (1) joint
structure between data types; (2) structure individual to each data type; (3) residual noise. LECTURE 3: Dimension

JAT=0,,, fori=1, ..., k Reduction (JIVE)

X PSS

1 Xjeated X, =1J, +A1'+81

. ]

X=| & |ipxn, scale e , decompose i i o
> = . > 1 1
. 2 1 11 1
1 [N] 1

X chaled X, = iJk :|'4k+8k,
) J—— ’I

pP=pi+pm+...+ pr J o 3
Concatenate data matrices from K platform joint structure matrix of rank r individual structure of rank ;- Instructor: Dr. Jack Pattee

21 ASAl Section on Statistics in
Wang et al. (2014) Nat Methods; Lock et al. (2013) The Annals of Applied Statistics L Genomics and Genetics
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Parallel Multi-Omics Integration

Single-cell multimodal
data technologies
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Hao etal. (2021) Cell

LECTURE 4b: Single-cell Multi-
Omics Analysis (Seurat)

Instructor: Rick Chang
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Hierarchical Multi-Omics Integration

» Transcriptomics;
* Proteomics;

 Metabolomics, etc.
 (Gene variant;

]

« Regulatory omics 1 L
(e.g., miRNA);
« EXxposure, etc.

G/E K-

LECTURE 4a: Causal Mediation
Analysis for Multi-Omics Analysis

gL

l

23 Zhang et al. (2016) Bioinformatics; Song et al. (2020). BAMA. Biometrics.

ASA“l Section on Statistics in
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II1. Horizontal Omics Data Integration

ASAY °
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Transcriptomic meta-analysis pipeline and browser-based software suite: MetaOmics

(A)Horizontal genamic meta-analysis T ~
{ MetaPreprocess Missing value imputation 1
Combine Crossdab | { Gene matching |
microarray § Cross-sample cohort : Input multiple Anmotati ) - Genefiltering Pre-processed :
studies Cross-platform | studies nnotation | data |
N\ 7/
Agilent Affymetrix ::__:__:::::::__::::::::::::::
; / Core QC result and suggestionsfor __ _ _ ___ ___ \
| . study exclusion
, strategies |
| Different biological objectives I
= |
o ' Association Pathway/Network Prediction Subtype Dimension I
e : analysis analysis discovery reduction |
I |
I . |
. . ' Meta- Meta- I
K transcri ptom|c datasets \ [ MetaDE } [MetaPath] [Network Predict MetaClust MetaPCA /l
. L -
e e i i i i U i i i s e ~
[ . N .
I Output & visualization Post-hoc analysis \I
D; D, e Dk ' ! J |
| ‘1’ \L \Ir l l’ A4 v [
I DE gene Enriched Visualization and Disease | = External Functional |
| list pathways diagnostic plot subtype validation annotation /
G genesx G genesx G genesx N e - e e e e e, e e e, e, e e e e, T = —
S, samples S, samples Sk samples
25 Ma et al. (2019) Bioinformatics. ASAh SeGCgr? Q&Q;ﬁg%ﬁgﬂ =




MetaOmics Pipeline: MetaDE

= Adaptively Weighted Fisher (AWFisher) method is one of the p-value combination methods that can additionally

characterizes which study contributes to the meta-analysis result.

effect size

Hypothesis Setting Hp:6y1 =--- =0, =0, Hp:atleast one;é 0,1<k<K

K p-value of gene g in study k

Weighted statistic Ug(wg) = — Z W log 1' ;
k=1

Under H, p-value of the observed u,(wy)

Ve = min [py(ugwe)l W = {w | wi € {0, 1}

AWFisher statistic

» The resulting weight reflects whether a study contributes to the statistical significance of a gene.

 The AWFisher p-values are calculated for each gene, followed by FDR control.

26 Li et al. (2011) The Annals of Applied Statistics; Huo et al. (2020) Bioinformatics. AS A‘ll Section on Statistics in

Genomics and Genetics



MetaOmics Pipeline: MetaDE

ERneg ERpos ERneg ERpos ERneg ERpos ERneg ERpos
1,1,1,1

pvalue * qvalue

KEGG Endocytosis 0.0003202 0.5491
GO:BP cell cycle 0.0007314 0.5491
KEGG DNA replication 0.001104 0.5491
GO:BP second-messenger-mediated signaling 0.001251 0.5491
Reactome DNA strand elongation 0.001471 0.5491
GO:BP regulation of mitotic cell cycle 0.002103 0.654
GO:BP cellular aromatic compound metabolic process 0.00255 0.6797
Reactome Class A/1 (Rhodopsin-like receptors) 0.004122 0.8208
GO:BP phagocytosis 0.004213 0.8208
GO:BP regulation of cell cycle 0.004765 0.8208

Showing 1 to 10 of 1,901 entries P ‘ ‘ 2 3 4 5 Next

27

Huo et al. (2020) Bioinformatics.

Input: merged individual transcriptomic
datasets (microarray or RNAseq) after
preprocessing module.

Options of 12 major meta-analysis
methods (e.g. AWFisher) with 22
variations for detecting DE genes.
Also implement a post hoc pathway
enrichment analysis to functionally

annotate detected DE genes.

AS All Section on Statistics in

Genomics and Genetics



MetaOmics Pipeline: MetaNetwork

ER-positive 1 ER-positive 2

0.278 0.056 0.222 0.111
° o @ . I X
® : ® </ ® % ®
y ® . AN @
\ ® ® X N \ ®
® @ N/ e
- e N e ®
® S * % * e

ER-negative 1 ER-negative 2 ER-negative 3ER-negative 4 ER-negative 5

0.86 0.78 0.81 1

ER-positive 3 ER-positive 4 ER-positive 5

0.111

0.89

ER-positive 1 ER-positive 2
0.86 0.93 0.87 0.93 0.87

ER-positive 3 ER-positive 4 ER-positive 5

MetaDCN method: constructs

the Differential Co-expression
Networks (DCN)

ER-negative 1ER-negative 2 ER-negative 3ER-negative 4 ER-negative 5
0.029

0.038 0.114 0.114 0.114

1. Generate co-expression network
2. Search for basic DCN modules

3. Assemble the basic DCN modules into super-modules

Etot = un ELdiff_mean 5 w2€size 5 w3E?iff_var

Mean network density
difference between outcome
groups across all studies

Size of the module Consistency of the density
difference between outcome
groups across studies

I 6 '.‘
L@ PsiiB10 2
%) Fo.éA
DBkz oo o
. HMHA1 0.3 \ /7
| ALOXS5 Wie—>"4
L21R DEh.nc oxs ‘ @1 .
PTBNG ‘
‘J : \N‘APO‘I;?/ " @ Module 1
AR / ‘y DR 1 @ Module 2
e 2 SN ot
e 1 @ Module 2+3
)P4 /_SAMSNT i
Nz \O Pathway Hit
28 C)@1 3 Zhu et al. (2017) Bioinformatics.

) A . . .
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MetaOmics Pipeline: MetaNetwork

» [nput: merged individual transcriptomic datasets after preprocessing module.

» GOAL: infer whether the gene-gene correlations change between outcome groups.

= Implement MetaDCN method to construct the basic differential co-expression networks (DCN) and assemble the
significant basic DCN modules into pathway-guided super-modules.

» The result of super-modules can be uploaded to a Cytoscape App “MetaDCNEXxplorer” for interactive visualization.

0.879 0.868 0.374
MetaDCN pathway-guided supermodules
C @RG | C iRG1 Cl iRG1
. 16T . e 1§D 6T . . 6T - Show 10 @ entries Search:
@ @ pathway_name pathway_size p_value q_value size num_gene_in_set module_num module
EDA caL E@A edi E@A (o) ]
[ Grou p 1: ] GO_EXTRINSIC_TO_MEMBRANE 25 000907  0.0915 12 2 2 L3L7
1@t IS8 @N 9B @) cfdB Inversion on Chr16 GO_ACTIN_FILAMENT 18 000725 00915 18 2 2 L7L8
GO_MONOSACCHARIDE_TRANSMEMBRANE_TRANSPORTER_ACTMTY 10 0.0583 0.0915 12 1 2 L3L7
S 10084 TYROBPS 1 (0A4 TYROBPS 1\ TYROBP - - - - ’
GO_SUGAR_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 1 0.0583 0.0915 12 1 2 L3L7
R 2 St 9 R 2 S1 9 R F2 S4 9
e LGRDSTHOR | ®: e LGEYSTHOR | ® & LGEFSTHOR | B GO_RUFFLE 31 0.012 0.0915 23 2 2 He,L7
BIOCARTA_MCALPAIN_PATHWAY 25 0.0206 0.0915 18 2 2 7.8
01 87 0242 0044 REACTOME_FACILITATVE_NA_INDEPENDENT_GLUCOSE_TRANSPORTERS 12 0.0683 0.0915 12 1 2 L3.L7
C16TCRG! Cl1@6TCBG1 Cl16TCiBG! GO_CARBOHYDRATE_TRANSMEMBRANE_TRANSPORTER_ACTMITY 16 0.0683 0.0915 12 1 2 13L7
ME@pA, PEAP MEpA PERP MEDA PEAP G > GO_CORTICAL_CYTOSKELETON 20 000725  0.0915 18 2 2 L1L7
rou .
EDA cdi ERA CEL1 E@A oL Transloga tion GO_CARBOHYDRATE_TRANSPORT 19 00583 0.0915 12 1 2 L3L7
|
l(@ll C@Bl(@ll C@Bﬂ@l . (‘@B between Chr1 5 Showing 1 to 10 of 55 entries Previous 1 2 3 4 5 6 Next
and Chr17
S1@n4 TYROBPS1(0A4 TYROBPS 1§74 TYRDBP
— S1gA9 R S1@ns RAQF2 SI@no ASA' Section on Statistics in
LGELSCHOR | LGAPSCECR! LGELSCHCR | A !
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MetaOmics Pipeline: MetaClust
MetaSparseKmeans

Simulation Study 1

‘g%w Simulation Study 2
150 patients ©a *

T 200 patients
I 11 I11 e I I11 11
[.

Color Key

Gene set 1: (0,+,-)

Three parameters to estimate:

1. Gene selection: genes that participate in the clustering
2. Sample clustering: Sample assignment to clusters

30 3. Pattern matching: Match cluster patterns across studies



MetaOmics Pipeline: MetaClust

« MetaSparseKmeans method extends the sparse K-means method towards a meta-analytic framework.

P i it i R Ty P R R ~.
. . . \
| Sparse K-means for single study L Meta Sparse K means for s studies ;
: ol |
I p I L[] . . ]
, P | P S Bcss'® (cG) (K :
subject | to || wl|, < 1,|| wl|; < p,w; > 0,7, . max wilx & i : (%) FA x|fmatch (M) .
| 2 1 J | J S TSS(S) J .
: | S | ] Cl),w,Mj=1 s=1 j .
I’ asso regularization on gene-specific weights 1 ‘ subject  to || W||2 < 1, W||1 < ww; > 0 Vj I
N e s e o e o s = s = s o= s s - .
N f e mm s o mm o o Em r s s EE 5 s R EEm § EEE R S EEE R S N EEm R EE R EEm 5 R EEm N s R Em -

/- Maximizing BCSS is equivalent to minimizing \ / Combine S studies. Estimate common w; across all studies. \

WCSS (within-cluster sum of squares). « BCSS may not be comparable across studies (different platform,
* Many {w;,1 <j < p} are shrunken to 0. u sample size and intensity scale). Use BCSS/TSS instead.
controls the amount of non-zero weights. « Add a penalty function to ensure disease subtypes of similar
* Only a small portion of genes have non-zero expression patterns are matched.
weights to contribute to the subtype modeling. » ] balances between separation of clusters in the studies and the
K goodness of cluster pattern matching across studies.

\ Section on Statistics in
31 Huo et al. (2016) JASA. ASAI'- Genomics and Genetics



Gap,

MetaOmics Pipeline: MetaClust

rE ;E {E
== = =
L= 14 = ‘4 =
= - =
== = =
4-—(1.‘,a= ﬁﬁl"fé Hj‘,;% ;
= F@-‘E: [e:%
1= = =
r | e tr—
! = =
gap statistics for study1.csv gap statistics for study2.csv gap statistics for study3.csv
2 - ———= 3 —— —
| / ) - i | % — e Implement MetaSparseKmeans method
1 & < o s o1/ to cluster samples and select the
o | / gl 7~ 1/ e
s 13 — =L — 34 — Intrinsic gene” set.
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
i e '/« Optionally tune the parameters before
] " ] e clustering by gap statistic: the number of
g | clusters (K) and the regularization
— parameter (Wbound).
e : : : \j. Section on Statistics in
2 4 6 8 10 12 14 16 ASA"- Genomics and Genetics




Module Methods

» Upload individual studies

MetaPreprocess * Four preprocessing steps: gene annotation, missing value imputation (if needed), gene matching
and preliminary gene filtering
MetaQC Utilizes six quantitative QC measures: IQC, EQC, AQCg and CQCg, as well as AQCp and CQCp

(quality control)

to make inclusion/exclusion decision

MetaDE
(differential expression analysis )

» fixed effects model (FEM)

Combining effect sizes | six variations of random effects model (REM)

Fisher, Stouffer, adaptively weighted Fisher (AW-Fisher), minimum p-
value (minP), maximum p-value (maxP) and rth ordered p-value (rOP)
and their one-sided correction variations

Combining p-values

Combining ranks sum of ranks, product of ranks (PR) and RankProd

Multi-class meta analysis | minimum multi-class correlation (minMCC) method

MetaPath
(pathway enrichment analysis )

* Meta-Analysis for Pathway Enrichment (MAPE) (Shen and Tseng, 2010 Bioinformatics)
* Comparative Pathway Integrator (CPI) (Zeng, 2018 Genes)

MetaNetwork
(differential co-expression network analysis)

MetaDCN method (Zhu, et al. 2017 Bioinformatics) to integrate multiple transcriptomic studies for
differential co-expression networks (DCN) detection.

MetaPredict
(differential co-expression network analysis)

MetaKTSP method (Kim, et al. 2016 Bioinformatics)

MetaClust MetaSparseKmeans algorithm (Huo, et al. 2016 JASA)
(clustering analysis)
MetaPCA MetaPCA method (Kim, 2018 Bioinformatics): sum of variance (SV) decomposition and sum of

23 (dimension reduction)

squared cosines (SSC) decomposition
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Welcome to MetaOmics

MetaOmics is an interactive software with graphical user interface (GUI) for genomic meta-analysis implemented using R shiny.
Many state of art meta analysis tools are avallable in this software, including MetaQC for quality control, MetaDE for differential
expression analysis, MetaPath for pathway enrichment analysis, MetaNetwork for differential co-expression network analysis,
MetaPredict for classification analysis, MetaClust for sparse clustering analysis, MetaPCA for principal component analysis.

Qur tool is avallable for download on github: MetaOmics. For detailed implementation of each tool, please refer to our Tutorials.

MetaOmics is developed and maintained by Dr. George Tseng's group from the Department of Biostatistics, University of
Pittsburgh.

We recommend users to use R 3.3 to implement our tool. If you are using R 3.4, you may encounter errors in installing
dependencies of the modules. You can manually install the dependencies by running the following commands in R:

install packages(c('GSA','combinat’, 'samr’, 'survival|, 'cluster’, 'gplots’, ‘ggplot2’, ‘i, 'shape’, ‘snow’, ‘snowfall, ‘igraph’, 'doMC', 'PMAY);
source( httos.//bioconductor.org/biocLite.R)) ; biocLite(c(multtest,, 'Biobase', ‘edgeR’, DESeq2', 'impute’, limma', ‘AnnotationDbi', ‘ConsensusClusterPlus', ‘genefilter’, 'GSEABase!,
‘Rgraphviz','GEOquery'))

For Windows, users need to run the following command in R to install the package 'doMC":

install packages(doMC', repos= http://R-Forge.R-project.org))

Session Information

protocol: http:
hostname: 127.0.0.1
port: 9987

server type: local

Directory for Saving Output Files: *

Toolsets

Package Status

MetaQC MelaQC is not installed:
MetaDE MetaDE is not installec m
MetaPeth MetaPath is not installed: m
MetaNetwork MetaNetwork is not installed
MetaPredict MetaPredict is not installed:

MetaClust installed

MetaPCA MetaPGA s ot instalied: (SRS
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General biological insights:

1.

Gligorijevic and Przulj (2015) Methods for biological data integration: perspectives and challenges. J R Soc Interface.

. Hasin et al. (2017) Multi-omics approaches to disease. Genome Biology.

2
3. Huang et al. (2017) More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Frontiers in Genetics.
4.
5
6
7

Dihazi et al. (2018) Integrative omics - from data to biology. Expert Review of Proteomics.

. Misra et al. (2019) Integrated omics: tools, advances and future approaches. Journal of Molecular Endocrinology.
. Noor et al. (2019) Biological insights through omics data integration. Current Opinion in Systems Biology.

. Wang et al. (2019) Toward multiomics-based next-generation diagnostics for precision medicine. Personalized Medicine

Mathematical/statistical challenges:

1.

® =N kWD
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Richardson, Tseng and Sun. (2016) Statistical Methods in Integrative Genomics. Annual Review of Statistics and Its Application.

Bersanelli et al. (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics

Wu et al. (2019) A Selective Review of Multi-Level Omics Data Integration Using Variable Selection. High Throughput.

Machine learning perspective:

Liet al. (2019) A review on machine learning principles for multi-view biological data integration. Briefings in Bioinformatics.

Zitnik et al. (2019) Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Information Fusion.
Mirza et al. (2019) Machine Learning and Integrative Analysis of Biomedical Big Data. Genes.

Rappoport and Shamir (2018) Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Research.
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Specialized disease areas:

1. Zhang et al. (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology

2. Sathyanarayanan et al. (2019) A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.
Briefings in Bioinformatics.

3. Chakraborty et al. (2018) Onco-Multi-OMICS Approach: A New Frontier in Cancer Research. BioMed Research International.
Canzler et al. (2020) Prospects and challenges of multi-omics data integration in toxicology. Archives of Toxicology.

4. Beltran et al. (2017) Proteomics and integrative omic approaches for understanding host—pathogen interactions and infectious diseases. Molecular
Systems Biology.
Sun and Hu (2018) Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.

6. Donovan et al. (2019) The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann Allergy Asthma
Immunol.

7. Higdon et al. (2015) The Promise of Multi-Omics and Clinical Data Integration to Identify and Target Personalized Healthcare Approaches in Autism
Spectrum Disorders. OMICS: A Journal of Integrative Biology.

Specific community-centered:

1. Pinu et al. (2019) Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites.

2. Zhang and Kuster (2019) Proteomics Is Not an Island: Multi-omics Integration Is the Key to Understanding Biological Systems. Molecular & Cellular
Proteomics.

Single cell multi-omics:

1. Chappell et al. (2018) Single-Cell (Multi)omics Technologies. Annual Review of Genomics and Human Genetics.

2. Hu et al. (2018) Single Cell Multi-Omics Technology: Methodology and Application. Front. Cell Dev. Biol.
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Thank you!



