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Dimension Reduction
• Dimension reduction seeks to explain the variation in a set of ‘independent’ or 

predictor variables using a set of derived features.
• Often in the case of high-dimensional data.

• Considered a form of unsupervised machine learning; i.e., it does not consider an 
outcome variable.
• Many uses for dimension reduction

• Clustering: grouping subjects or variables in the dataset.
• Feature engineering: generating a set of derived features for subsequent use, i.e., in a 

predictive modeling application.
• Visualization of high dimensional data.
• Etc.
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Principal Components Analysis

• A popular method for dimension reduction is principal components 
analysis (PCA).
• PCA projects the dataset into a new vector space with an orthonormal 

basis.
• If we consider our features to be encoded in the n-sample by p-feature 

matrix X, we can think of the principal components representation as 
closely related to the singular value decomposition of X.
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Singular Value Decomposition

• According to SVD, any 𝑛×𝑝 matrix X can be decomposed into:
𝑿 = 𝑼𝚺𝑽!

• U is an 𝑛×𝑛 matrix where columns are orthonormal.
• 𝚺 is an 𝑛×𝑝 rectangular diagonal matrix with entries equal to the square root 

of the eigenvalues of 𝑿!𝑿.
• V is a 𝑝×𝑝 matrix with orthonormal columns.

• Note: 𝑿!𝑿 = ⋯ = 𝑽!𝚺"𝑽, which satisfies the conditions for an 
eigendecomposition.
• Thus, columns of V are equivalent to eigenvectors of the covariance matrix of 

X

• Define 𝑾! = 𝚺𝑽!

• This gives us the PCA decomposition: 𝑻 = 𝑿𝑾.
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PCA
Consider representation 𝑻 = 𝑿𝑾.
• T is the principal component representation of our data, i.e., an 𝑛×𝑝

matrix where our original data has been projected into an orthonormal 
basis space. Each column is a principal component.
• T has two special properties:
• Each column of T is orthogonal to all other columns.
• Each column of T explains more variation than all subsequent columns and 

less variation than all preceding columns.

• W is the loading matrix of the principal component representation.
𝑃𝐶1 = 𝑤##𝑋# +𝑤#"𝑋" +⋯+𝑤#$𝑋$
𝑃𝐶2 = 𝑤"#𝑋# +𝑤""𝑋" +⋯+𝑤"$𝑋$
𝑃𝐶3 = 𝑤%#𝑋# +𝑤%"𝑋" +⋯+𝑤%$𝑋$
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PCA

• If we want to generate a 1-dimensional representation of our data X in 
such a way that preserves the most variation in our data, this is done 
by projecting the data onto the first eigenvector of the covariance 
matrix.
• i.e., 𝑿𝑾𝟏 has the largest sample variance among all (normalized) linear 

combinations of the columns of X.
• We can reduce the number of eigenvectors we use to reconstruct our 

data, thus projecting the data onto only those top few eigenvectors of 
the covariance matrix:

𝑻& = 𝑿𝑾&

Where 𝑾& retains only the first L eigenvectors.
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Dimension Reduction for Multi-omics

• According to Cantini et al: “Multiomics integrative approaches should 
be able to capture not only signals shared by all omics data, but also 
those emerging from the complementarity of various omics data”.
• Want a way to model variation shared among datatypes and unique to 

each datatype.
• Informatively combining information from multiple datatypes allows 

for more precise analysis.
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Multi-omics

• Consider the multi-omics context. We have n individuals where we 
have measured omic values for some set of k omics types. So, say, 
𝑿#, … , 𝑿', for 𝑘 ≥ 2, where 𝑿( is 𝑝( × 𝑛.
• Variables are rows, subjects are columns.
• 𝑝# can vary widely according to study and data type; transcriptomic data may 

have 𝑝#~20,000, whereas miRNA may have 𝑝#~1,000
• We want a dimension-reduced representation of the multi-omic data.
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Multi-omics

• Rows of the factor matrix F are called ‘factors’.
• Columns the weight matrix are called ‘metagenes’. 
• Factors are projections onto the sample space, whereas metagenes are 

projections onto the omics space.
• The factor matrix can be used to cluster samples, whereas columns of 

weight matrix can be used to extract markers (i.e., selecting the top 
ranked genes).
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Multi-omics
• Consider ‘stacking’ the k matrices:

𝑿 =
𝑿#
⋮
𝑿'

• Could simply perform PCA on the stacked matrix X: this is termed 
‘consensus PCA’ (Wold, Kettaneh, and Tjessem, 1996). Consensus 
PCA is leveraged by popular ‘iCluster’ method (Shen, Olshen, and 
Ladanyi, 2009).
• However, such an approach cannot measure the so-called ‘joint’ and 

‘individual’ structure.
• Broadly: this is the distinction between whether or not a dimension reduction 

method estimates omics-specific factors.
• For example: could be certain patterns unique to miRNA and 

transcriptomic data, and certain patterns shared between the two.
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Joint and Individual Variation Explained

• One example of a method that estimates both individual and joint 
variation is JIVE (Lock et al, 2013).
• Idea is to decompose X into joint and individual variation, where 

matrix 𝑱( encodes the contribution of omics datatype I to the joint 
structure and 𝑨( encodes the individual variation.
• Error terms indicate that we use a reduced representation (i.e., limit the 

number of ranks used in the reconstruction).
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JIVE
• JIVE can be conceptualized as a form of multidimensional PCA.
• X has an SVD decomposition, and thus a PCA representation X=WU.
• Thus, the rank r joint matrix J can be written as the product of a 𝑝 × 𝑟

loading matrix W and an 𝑟 × 𝑛 factor matrix U:

𝑾 =
𝑾#
⋮
𝑾'

Where each 𝑾( gives the loadings of the joint structure corresponding 
to datatype i.
• The rank r individual structure matrix 𝑨( for 𝑿( can be written as 
𝑽(𝑼(, where 𝑽( is a 𝑝( × 𝑟( loading matrix and 𝑼( is an 𝑟( × 𝑛 factor 
matrix.
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JIVE

• This gives us the full model as follows:

𝑿# = 𝑾#𝑼 + 𝑽#𝑼# + 𝑹#
⋮

𝑿' = 𝑾'𝑼 + 𝑽'𝑼' + 𝑹'
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Applications

• Now that we have a multi-omic dimension reduction, what can we do 
with it?

1. Cluster samples.
2. Predict clinical outcome.
3. Associate factors with clinical variables of interest (age, gender).

• Review paper (Cantini et al) compares nine methods: intNMF, JIVE, 
MCIA, RGCCA, iCluster, MOFA, tICA, MSFA, and data fusion.
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Single-Cell Clustering

• Cantini et al used factors derived from multi-omic dimension 
reduction methods to cluster samples in single cell data.
• These methods were originally designed for bulk data, but characterizing their 

performance on single-cell data is of interest.
• Two methods, intNMF and iCluster, intrinsically perform clustering; 

for the other seven methods, k-means consensus clustering was 
applied to the factor matrix.
• Two ‘omics types: scRNA-seq and scATAC-seq, which measure gene 

expression and chromatin accessibility, respectively.
• Applied to 206 cells from three cancer cell lines.
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Application to TCGA Data

• Analyzed data from The Cancer Genome Atlas on ten different cancer 
types.
• Omics data types were gene expression, DNA methylation and miRNA 

expression.
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TCGA Clustering

• Used clinical subtyping to assess clustering performance of jDR
methods.
• Note: these cannot be considered a ‘ground truth’ assessment.

• For BRCA, compared clustering to two subtypes: ER/PR/HER-2, and 
COCA classification.
• COCA: integrative subtyping obtained by separately clustering different 

‘omics types and performing a consensus clustering on the shared results.
• For methods that do not automatically perform clustering, conducted 

k-means using the first four derived factors.
• JIVE has best performance based on clinical subtyping.
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Predicting Survival

• Used first ten factors to predict survival via Cox regression.
• Examined the number of derived features associated with survival.
• Appears that the number of associated factors depends more on the 

cancer type than the dimension reduction approach.
• RGCCA, MCIA, and JIVE showed most promising results for those 

cancers where predicting survival was most difficult.
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Association with Clinical Factors

• Assess the association of dimension-reduced factors with clinical 
annotations.
• May be able to determine if one factor is a proxy for some clinical feature.

• Performed analysis in TCGA data, using three omics datatypes.
• Investigated four variables: ‘age’, ‘days to new tumor’, ‘gender’, and 

‘neo-adjuvant therapy administration’.
• Investigated selectivity of methods, i.e., ability to generate a one-to-

one map between reduced factors and clinical annotations.
• RGCCA, MCIA, and MOFA are the best-performing algorithms 

overall.
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