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Dimension Reduction

* Principal components analysis

Multi-omics Dimension Reduction
e Stacked PCA

* Joint and Individual Variation Explained

Method Comparison

* Clustering
e Association

e Prediction
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Dimension Reduction

* Dimension reduction seeks to explain the variation in a set of ‘independent’ or
predictor variables using a set of derived features.

 Often in the case of high-dimensional data.

* Considered a form of unsupervised machine learning; 1.e., it does not consider an
outcome variable.

* Many uses for dimension reduction
* Clustering: grouping subjects or variables in the dataset.

» Feature engineering: generating a set of derived features for subsequent use, 1.e., in a
predictive modeling application.

* Visualization of high dimensional data.
* Etc.
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Principal Components Analysis

* A popular method for dimension reduction 1s principal components
analysis (PCA).

* PCA projects the dataset into a new vector space with an orthonormal
basis.

* If we consider our features to be encoded 1n the n-sample by p-feature
matrix X, we can think of the principal components representation as
closely related to the singular value decomposition of X.




Singular Value Decomposition

* According to SVD, any nXp matrix X can be decomposed into:
X =UxV"
e U 1s an nXn matrix where columns are orthonormal.

* ¥ 1s an nXp rectangular diagonal matrix with entries equal to the square root
of the eigenvalues of X1 X.

* V 1s a pXp matrix with orthonormal columns.

e Note: X'X = --- = VX2V, which satisfies the conditions for an
eigendecomposition.

* Thus, columns of V are equivalent to eigenvectors of the covariance matrix of
X

* Define W' = xv7
* This gives us the PCA decomposition: T = XW.
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PCA

Consider representation T = XW.

* T is the principal component representation of our data, 1.e., an nXp
matrix where our original data has been projected into an orthonormal
basis space. Each column is a principal component.

* T has two special properties:
* Each column of T 1s orthogonal to all other columns.

* Each column of T explains more variation than all subsequent columns and
less variation than all preceding columns.

* W is the loading matrix of the principal component representation.
PC1 = wy X +wipXp + -+ wyppX,
PC2 = wy1 X1 + Wy Xy + -+ Wy X,
PC3 = w31 X1 + w3 Xy + -+ w3 X,
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PCA

* If we want to generate a 1-dimensional representation of our data X in
such a way that preserves the most variation 1n our data, this 1s done
by projecting the data onto the first eigenvector of the covariance
matrix.

* 1.e., XW has the largest sample variance among all (normalized) linear
combinations of the columns of X.

* We can reduce the number of eigenvectors we use to reconstruct our
data, thus projecting the data onto only those top few eigenvectors of
the covariance matrix:

TL —_ X WL
Where W retains only the first L eigenvectors.
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Dimension Reduction for Multi-omics

* According to Cantini et al: “Multiomics integrative approaches should
be able to capture not only signals shared by all omics data, but also
those emerging from the complementarity of various omics data”.

* Want a way to model variation shared among datatypes and unique to
cach datatype.

* Informatively combining information from multiple datatypes allows
for more precise analysis.




* Consider the multi-omics context. We have n individuals where we
have measured omic values for some set of £ omics types. So, say,
X4, ...,Xy, fork = 2, where X; 1s p; X n.

* Variables are rows, subjects are columns.

* p; can vary widely according to study and data type; transcriptomic data may
have p;~20,000, whereas miRNA may have p;~1,000

* We want a dimension-reduced representation of the multi-omic data.
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 Rows of the factor matrix F are called ‘factors’.

* Columns the weight matrix are called ‘metagenes’.

* Factors are projections onto the sample space, whereas metagenes are
projections onto the omics space.

* The factor matrix can be used to cluster samples, whereas columns of
weight matrix can be used to extract markers (i.e., selecting the top
ranked genes).
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* Consider ‘stacking’ the k matrices:

()

* Could simply perform PCA on the stacked matrix X: this 1s termed
‘consensus PCA’ (Wold, Kettaneh, and Tjessem, 1996). Consensus
PCA 1s leveraged by popular ‘1Cluster’ method (Shen, Olshen, and
Ladanyi, 2009).
* However, such an approach cannot measure the so-called ‘joint” and
‘individual’ structure.
* Broadly: this 1s the distinction between whether or not a dimension reduction
method estimates omics-specific factors.

* For example: could be certain patterns unique to miRNA and
transcriptomic data, and certain patterns shared between the two.
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Joint and Individual Variation Explained

* One example of a method that estimates both individual and joint
variation 1s JIVE (Lock et al, 2013).

* Idea 1s to decompose X into joint and individual variation, where
matrix J; encodes the contribution of omics datatype / to the joint
structure and A; encodes the individual variation.

* Error terms indicate that we use a reduced representation (1.e., limit the
number of ranks used 1n the reconstruction).

X1 = Ji+A+eq

X Jir+Ar+e&p,
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JIVE

* JIVE can be conceptualized as a form of multidimensional PCA.
* X has an SVD decomposition, and thus a PCA representation X=WU.

* Thus, the rank » joint matrix J can be written as the productofap X r
loading matrix W and an r X n factor matrix U:

-

Where each W; gives the loadings of the joint structure corresponding
to datatype i.

* The rank » individual structure matrix A; for X; can be written as
V;U;, where V; 1s a p; X r; loading matrix and U; 1s an r; X n factor
matrix.
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JIVE

* This gives us the full model as follows:

X1 —_ W1U + V]_Ul + R1

Xk —_ WkU‘l‘VkUk +Rk




Applications

 Now that we have a multi-omic dimension reduction, what can we do
with 1t?
1. Cluster samples.
2. Predict clinical outcome.
3. Associate factors with clinical variables of interest (age, gender).

* Review paper (Cantini et al) compares nine methods: intNMF, JIVE,
MCIA, RGCCA, 1Cluster, MOFA, tICA, MSFA, and data fusion.
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Single-Cell Clustering

* Cantini et al used factors derived from multi-omic dimension
reduction methods to cluster samples in single cell data.
* These methods were originally designed for bulk data, but characterizing their
performance on single-cell data 1s of interest.

* Two methods, IntNMF and 1Cluster, intrinsically perform clustering;
for the other seven methods, k-means consensus clustering was
applied to the factor matrix.

* Two ‘omics types: scCRNA-seq and scATAC-seq, which measure gene
expression and chromatin accessibility, respectively.

* Applied to 206 cells from three cancer cell lines.
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Application to TCGA Data

* Analyzed data from The Cancer Genome Atlas on ten different cancer
types.

* Omics data types were gene expression, DNA methylation and miRNA
expression.




TCGA Clustering

* Used clinical subtyping to assess clustering performance of jJDR

methods.
* Note: these cannot be considered a ‘ground truth’ assessment.

* For BRCA, compared clustering to two subtypes: ER/PR/HER-2, and
COCA classification.

* COCA: integrative subtyping obtained by separately clustering different
‘omics types and performing a consensus clustering on the shared results.

* For methods that do not automatically perform clustering, conducted
k-means using the first four derived factors.

 JIVE has best performance based on clinical subtyping.
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Predicting Survival

* Used first ten factors to predict survival via Cox regression.

 Examined the number of derived features associated with survival.

* Appears that the number of associated factors depends more on the
cancer type than the dimension reduction approach.

* RGCCA, MCIA, and JIVE showed most promising results for those
cancers where predicting survival was most difficult.
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Association with Clinical Factors

e Assess the association of dimension-reduced factors with clinical
annotations.

* May be able to determine 1f one factor is a proxy for some clinical feature.
* Performed analysis in TCGA data, using three omics datatypes.

* Investigated four variables: ‘age’, ‘days to new tumor’, ‘gender’, and
‘neo-adjuvant therapy administration’.

* Investigated selectivity of methods, 1.e., ability to generate a one-to-
one map between reduced factors and clinical annotations.

* RGCCA, MCIA, and MOFA are the best-performing algorithms
overall.
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