|
a |
|
b/Lecture 2/Lecture 2 Lab.r |
|
|
1 |
## to install MOVICS |
|
|
2 |
### note: there are many dependencies; you may get an error |
|
|
3 |
### for a missing package; download and try again |
|
|
4 |
### it may take several times |
|
|
5 |
### you can refer to their IMPORTS file from their DESCRIPTION file on Github |
|
|
6 |
### for a list of dependencies: |
|
|
7 |
### https://github.com/xlucpu/MOVICS/blob/master/DESCRIPTION |
|
|
8 |
|
|
|
9 |
# if (!requireNamespace("BiocManager", quietly = TRUE)) |
|
|
10 |
# install.packages("BiocManager") |
|
|
11 |
# if (!require("devtools")) |
|
|
12 |
# install.packages("devtools") |
|
|
13 |
# devtools::install_github("xlucpu/MOVICS") |
|
|
14 |
|
|
|
15 |
install.packages("~/Downloads/SNFtool_2.3.0.tar.gz", repos = NULL, type="source") |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
|
19 |
library(MOVICS) |
|
|
20 |
set.seed(4444) |
|
|
21 |
|
|
|
22 |
library("jpeg") |
|
|
23 |
jj <- readJPEG("MOVICS_pipeline.jpeg",native=TRUE) |
|
|
24 |
plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE) |
|
|
25 |
rasterImage(jj,0,0,1,1) |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
jj <- readJPEG("methods_comparison.jpeg",native=TRUE) |
|
|
29 |
plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE) |
|
|
30 |
rasterImage(jj,0,0,1,1) |
|
|
31 |
|
|
|
32 |
|
|
|
33 |
# install.packages("Rfssa") if you want to download through github |
|
|
34 |
library(Rfssa) |
|
|
35 |
url <- "https://github.com/KechrisLab/ASAShortCourse-MultiOmics/blob/main/Lecture%202/brca_dat.Rdata" |
|
|
36 |
load_github_data(url) |
|
|
37 |
|
|
|
38 |
# load("brca_dat.Rdata") |
|
|
39 |
|
|
|
40 |
# let's get a quick look at our data |
|
|
41 |
names(brca_dat) |
|
|
42 |
paste("dim of clinical data:", dim(brca_dat[["clinical"]])) |
|
|
43 |
head(brca_dat[["clinical"]]) |
|
|
44 |
|
|
|
45 |
# check sample names all match |
|
|
46 |
identical(brca_dat[["clinical"]]$bcr_patient_barcode, colnames(brca_dat[["MO"]][["Expression"]])) |
|
|
47 |
identical(brca_dat[["clinical"]]$bcr_patient_barcode, colnames(brca_dat[["MO"]][["Methylation"]])) |
|
|
48 |
identical(brca_dat[["clinical"]]$bcr_patient_barcode, colnames(brca_dat[["MO"]][["miRNA"]])) |
|
|
49 |
|
|
|
50 |
identical(colnames(brca_dat[["MO"]][["Expression"]]), colnames(brca_dat[["MO"]][["Methylation"]])) |
|
|
51 |
identical(colnames(brca_dat[["MO"]][["Expression"]]), colnames(brca_dat[["MO"]][["miRNA"]])) |
|
|
52 |
identical(colnames(brca_dat[["MO"]][["Methylation"]]), colnames(brca_dat[["MO"]][["miRNA"]])) |
|
|
53 |
# should all be TRUE (6) |
|
|
54 |
|
|
|
55 |
paste("names of MO data:", names(brca_dat[["MO"]])) |
|
|
56 |
paste("dim of mRNA data:", dim(brca_dat[["MO"]][["Expression"]])) |
|
|
57 |
paste("dim of methylation data:", dim(brca_dat[["MO"]][["Methylation"]])) |
|
|
58 |
paste("dim of miRNA data:", dim(brca_dat[["MO"]][["miRNA"]])) |
|
|
59 |
|
|
|
60 |
# data checking -- are there any missing values? |
|
|
61 |
sum(is.na(brca_dat[["MO"]][["Expression"]])) |
|
|
62 |
sum(is.na(brca_dat[["MO"]][["Methylation"]])) |
|
|
63 |
sum(is.na(brca_dat[["MO"]][["miRNA"]])) |
|
|
64 |
|
|
|
65 |
# exp |
|
|
66 |
range(brca_dat[["MO"]][["Expression"]]) |
|
|
67 |
plot(density(brca_dat[["MO"]][["Expression"]]), main = "Expression") |
|
|
68 |
|
|
|
69 |
# methyl |
|
|
70 |
range(brca_dat[["MO"]][["Methylation"]]) |
|
|
71 |
plot(density(brca_dat[["MO"]][["Methylation"]]), main = "Methylation") |
|
|
72 |
|
|
|
73 |
# miRNA |
|
|
74 |
range(brca_dat[["MO"]][["miRNA"]]) |
|
|
75 |
plot(density(brca_dat[["MO"]][["miRNA"]]), main = "miRNA") |
|
|
76 |
|
|
|
77 |
|
|
|
78 |
jj <- readJPEG("ex_breastcancer_pic.jpeg") |
|
|
79 |
plot(0:1,0:1,type="n",ann=FALSE,axes=FALSE) |
|
|
80 |
rasterImage(jj,0,0,1,1) |
|
|
81 |
# https://doi.org/10.1016/B978-0-12-800886-7.00021-2 |
|
|
82 |
|
|
|
83 |
optk.brca <- getClustNum(data = brca_dat[["MO"]], |
|
|
84 |
is.binary = c(F,F,F), # all omics data is continuous (not binary) |
|
|
85 |
try.N.clust = 2:8, # try cluster number from 2 to 8 |
|
|
86 |
fig.name = "CLUSTER NUMBER OF TCGA-BRCA") |
|
|
87 |
|
|
|
88 |
|
|
|
89 |
|
|
|
90 |
optk.brca |
|
|
91 |
|
|
|
92 |
# what if we use the suggested k=3 clusters? |
|
|
93 |
# you don't need to run this during lab; I'm just presenting it as an example |
|
|
94 |
mo_rslts_3 <- getMOIC(data = brca_dat[["MO"]], |
|
|
95 |
methodslist = list("SNF", "PINSPlus", "NEMO", "LRAcluster", "IntNMF"), |
|
|
96 |
N.clust = 3, |
|
|
97 |
type = c("gaussian", "gaussian", "gaussian")) |
|
|
98 |
|
|
|
99 |
cmoic.brca_3 <- getConsensusMOIC(moic.res.list = mo_rslts_3, |
|
|
100 |
fig.name = "CONSENSUS HEATMAP - 3 Clusters", |
|
|
101 |
distance = "euclidean", |
|
|
102 |
linkage = "average") |
|
|
103 |
|
|
|
104 |
getSilhouette(sil = cmoic.brca_3$sil, # a sil object returned by getConsensusMOIC() |
|
|
105 |
fig.path = getwd(), |
|
|
106 |
fig.name = "SILHOUETTE", |
|
|
107 |
height = 5.5, |
|
|
108 |
width = 5) |
|
|
109 |
|
|
|
110 |
mo_rslts <- getMOIC(data = brca_dat[["MO"]], |
|
|
111 |
methodslist = list("SNF", "PINSPlus", "NEMO", "LRAcluster", "IntNMF"), |
|
|
112 |
N.clust = 4, # set number of clusters |
|
|
113 |
type = c("gaussian", "gaussian", "gaussian")) # what is the distribution of the datasets in MO list (same order) |
|
|
114 |
|
|
|
115 |
|
|
|
116 |
cmoic.brca <- getConsensusMOIC(moic.res.list = mo_rslts, |
|
|
117 |
fig.name = "CONSENSUS HEATMAP - 4 Clusters", |
|
|
118 |
distance = "euclidean", |
|
|
119 |
linkage = "ward.D") |
|
|
120 |
|
|
|
121 |
getSilhouette(sil = cmoic.brca$sil, # a sil object returned by getConsensusMOIC() |
|
|
122 |
fig.path = getwd(), |
|
|
123 |
fig.name = "SILHOUETTE", |
|
|
124 |
height = 5.5, |
|
|
125 |
width = 5) |
|
|
126 |
|
|
|
127 |
# convert beta value to M value for stronger signal |
|
|
128 |
std_dat <- brca_dat[["MO"]] |
|
|
129 |
std_dat[["Methylation"]] <- log2(std_dat[["Methylation"]] / (1 - std_dat[["Methylation"]])) |
|
|
130 |
|
|
|
131 |
# data normalization for heatmap |
|
|
132 |
plotdata <- getStdiz(data = std_dat, |
|
|
133 |
halfwidth = c(2,2,2), # no truncation for mutation |
|
|
134 |
centerFlag = c(T,T,T), # no center for mutation |
|
|
135 |
scaleFlag = c(T,T,T)) # no scale for mutation |
|
|
136 |
|
|
|
137 |
mRNA.col <- c("#00FF00", "#008000", "#000000", "#800000", "#FF0000") |
|
|
138 |
meth.col <- c("#0074FE", "#96EBF9", "#FEE900", "#F00003") |
|
|
139 |
miRNA.col <- c("#6699CC", "white" , "#FF3C38") |
|
|
140 |
col.list <- list(mRNA.col, meth.col, miRNA.col) |
|
|
141 |
|
|
|
142 |
# extract PAM50, pathologic stage for sample annotation |
|
|
143 |
annCol <- brca_dat[["clinical"]][,c("BRCA_Subtype_PAM50"), drop = FALSE] |
|
|
144 |
|
|
|
145 |
# generate corresponding colors for sample annotation |
|
|
146 |
annColors <- list( |
|
|
147 |
BRCA_Subtype_PAM50 = c("Basal" = "blue", |
|
|
148 |
"Her2" = "red", |
|
|
149 |
"LumA" = "yellow", |
|
|
150 |
"LumB" = "green", |
|
|
151 |
"Normal" = "black") |
|
|
152 |
) |
|
|
153 |
|
|
|
154 |
|
|
|
155 |
|
|
|
156 |
# comprehensive heatmap |
|
|
157 |
getMoHeatmap(data = plotdata, |
|
|
158 |
row.title = names(std_dat), |
|
|
159 |
is.binary = c(F,F,F), # we don't have any binary omics data (ex mutation) |
|
|
160 |
legend.name = c("mRNA","M value","miRNA"), |
|
|
161 |
clust.res = mo_rslts$SNF$clust.res, # cluster results for SNF |
|
|
162 |
color = col.list, |
|
|
163 |
# annCol = annCol, # annotation for samples (if you want to show PAM50 classes too) |
|
|
164 |
# annColors = annColors, # annotation color |
|
|
165 |
width = 10, # width of each subheatmap |
|
|
166 |
height = 5, # height of each subheatmap |
|
|
167 |
fig.name = "COMPREHENSIVE HEATMAP OF SNF") |
|
|
168 |
|
|
|
169 |
getMoHeatmap(data = plotdata, |
|
|
170 |
row.title = names(std_dat), |
|
|
171 |
is.binary = c(F,F,F), # all data is continuous |
|
|
172 |
legend.name = c("mRNA","M value","miRNA"), |
|
|
173 |
clust.res = mo_rslts$PINSPlus$clust.res, # cluster results for PINSPlus |
|
|
174 |
color = col.list, |
|
|
175 |
width = 10, # width of each subheatmap |
|
|
176 |
height = 5, # height of each subheatmap |
|
|
177 |
fig.name = "COMPREHENSIVE HEATMAP OF PINSPlus") |
|
|
178 |
|
|
|
179 |
# comprehensive heatmap (may take a while) |
|
|
180 |
getMoHeatmap(data = plotdata, |
|
|
181 |
row.title = names(std_dat), |
|
|
182 |
is.binary = c(F,F,F), |
|
|
183 |
legend.name = c("mRNA","M value","miRNA"), |
|
|
184 |
clust.res = mo_rslts$NEMO$clust.res, # cluster results for NEMO |
|
|
185 |
color = col.list, |
|
|
186 |
width = 10, # width of each subheatmap |
|
|
187 |
height = 5, # height of each subheatmap |
|
|
188 |
fig.name = "COMPREHENSIVE HEATMAP OF PINSPlus") |
|
|
189 |
|
|
|
190 |
# comprehensive heatmap (may take a while) |
|
|
191 |
getMoHeatmap(data = plotdata, |
|
|
192 |
row.title = names(std_dat), |
|
|
193 |
is.binary = c(F,F,F), |
|
|
194 |
legend.name = c("mRNA","M value","miRNA"), |
|
|
195 |
clust.res = mo_rslts$LRAcluster$clust.res, # cluster results for LRAcluster |
|
|
196 |
color = col.list, |
|
|
197 |
width = 10, |
|
|
198 |
height = 5, |
|
|
199 |
fig.name = "COMPREHENSIVE HEATMAP OF PINSPlus") |
|
|
200 |
|
|
|
201 |
# comprehensive heatmap (may take a while) |
|
|
202 |
getMoHeatmap(data = plotdata, |
|
|
203 |
row.title = names(std_dat), |
|
|
204 |
is.binary = c(F,F,F), |
|
|
205 |
legend.name = c("mRNA","M value","miRNA"), |
|
|
206 |
clust.res = mo_rslts$IntNMF$clust.res, # cluster results for intNMF |
|
|
207 |
color = col.list, |
|
|
208 |
width = 10, # width of each subheatmap |
|
|
209 |
height = 5, # height of each subheatmap |
|
|
210 |
fig.name = "COMPREHENSIVE HEATMAP OF IntNMF") |
|
|
211 |
|
|
|
212 |
getMoHeatmap(data = plotdata, |
|
|
213 |
row.title = names(plotdata), |
|
|
214 |
is.binary = c(F,F,F), # no binary omics data |
|
|
215 |
legend.name = c("mRNA","M value","miRNA"), |
|
|
216 |
clust.res = cmoic.brca$clust.res, # consensusMOIC results |
|
|
217 |
clust.dend = NULL, # show no dendrogram for samples |
|
|
218 |
show.colnames = FALSE, # show no sample names |
|
|
219 |
show.row.dend = c(T,T,T), # show dendrogram for features |
|
|
220 |
annRow = NULL, # no selected features |
|
|
221 |
color = col.list, |
|
|
222 |
annCol = annCol, # annotation for samples |
|
|
223 |
annColors = annColors, # annotation color |
|
|
224 |
width = 10, # width of each subheatmap |
|
|
225 |
height = 5, # height of each subheatmap |
|
|
226 |
fig.name = "COMPREHENSIVE HEATMAP OF CONSENSUSMOIC") |
|
|
227 |
|
|
|
228 |
clust_rslts_SNF_df <- data.frame(mo_rslts$SNF$clust.res) |
|
|
229 |
colnames(clust_rslts_SNF_df) <- c("samID", "SNF") |
|
|
230 |
clust_rslts_CM_df <- data.frame(cmoic.brca$clust.res) |
|
|
231 |
colnames(clust_rslts_CM_df) <- c("samID", "Consensus") |
|
|
232 |
|
|
|
233 |
clust_rslts_df <- merge(clust_rslts_SNF_df, clust_rslts_CM_df, by="samID") |
|
|
234 |
# head(clust_rslts_df) |
|
|
235 |
|
|
|
236 |
table(clust_rslts_df$SNF, clust_rslts_df$Consensus) |
|
|
237 |
|
|
|
238 |
# survival comparison |
|
|
239 |
brca_dat[["clinical"]]$futime = as.numeric(brca_dat[["clinical"]]$futime) |
|
|
240 |
head(brca_dat[["clinical"]]) |
|
|
241 |
surv.brca <- compSurv(moic.res = cmoic.brca, |
|
|
242 |
surv.info = brca_dat[["clinical"]], |
|
|
243 |
convt.time = "m", # convert day unit to month |
|
|
244 |
surv.median.line = "h", # draw horizontal line at median survival |
|
|
245 |
xyrs.est = c(5,10), # estimate 5 and 10-year survival |
|
|
246 |
fig.name = "KAPLAN-MEIER CURVE OF CONSENSUSMOIC") |
|
|
247 |
|
|
|
248 |
|
|
|
249 |
print(surv.brca) |
|
|
250 |
|
|
|
251 |
# clinVars_df <- brca_dat[["clinical"]][,c("ajcc_pathologic_stage", "age_at_diagnosis","ajcc_pathologic_t", "ajcc_pathologic_n","ajcc_pathologic_m")] |
|
|
252 |
clinVars_df <- brca_dat[["clinical"]] |
|
|
253 |
rownames(clinVars_df) <- clinVars_df$bcr_patient_barcode |
|
|
254 |
clinVars_df <- clinVars_df[,c( "ajcc_pathologic_stage", "ajcc_pathologic_t", "ajcc_pathologic_n", "ajcc_pathologic_m", "age_at_diagnosis")] |
|
|
255 |
head(clinVars_df) |
|
|
256 |
|
|
|
257 |
|
|
|
258 |
clin.brca <- compClinvar(moic.res = cmoic.brca, |
|
|
259 |
var2comp = clinVars_df, # data.frame needs to summarize (must has row names of samples) |
|
|
260 |
strata = "Subtype", # stratifying variable (e.g., Subtype in this example) |
|
|
261 |
# factorVars = c("ajcc_pathologic_stage"), # features that are considered categorical variables |
|
|
262 |
factorVars = c("ajcc_pathologic_stage", "ajcc_pathologic_t", "ajcc_pathologic_n", "ajcc_pathologic_m"), # features that are considered categorical variables |
|
|
263 |
nonnormalVars = "age_at_diagnosis", # feature(s) that are considered using nonparametric test |
|
|
264 |
exactVars = NULL, # feature(s) that are considered using exact test |
|
|
265 |
doWord = FALSE, # generate .docx file in local path |
|
|
266 |
tab.name = "SUMMARIZATION OF CLINICAL FEATURES") |
|
|
267 |
clin.brca |
|
|
268 |
|
|
|
269 |
# compare agreement with other subtypes |
|
|
270 |
sub_df = data.frame( |
|
|
271 |
BRCA_Subtype_PAM50 = brca_dat[["clinical"]][,c("BRCA_Subtype_PAM50")]) |
|
|
272 |
rownames(sub_df) = brca_dat[["clinical"]][,c("bcr_patient_barcode")] |
|
|
273 |
head(sub_df) |
|
|
274 |
|
|
|
275 |
# agreement comparison (support up to 6 classifications include current subtype) |
|
|
276 |
agree.brca <- compAgree(moic.res = cmoic.brca, |
|
|
277 |
subt2comp = sub_df, |
|
|
278 |
doPlot = TRUE, |
|
|
279 |
box.width = 0.2, |
|
|
280 |
fig.name = "AGREEMENT OF CONSENSUSMOIC WITH PAM50 Subtype") |
|
|
281 |
|
|
|
282 |
# run DEA with limma |
|
|
283 |
runDEA(dea.method = "limma", |
|
|
284 |
expr = brca_dat[["MO"]][["Expression"]], # normalized expression data |
|
|
285 |
moic.res = cmoic.brca, |
|
|
286 |
overwt = T, |
|
|
287 |
res.path = getwd(), # path to save marker files |
|
|
288 |
prefix = "de_TCGA-BRCA") |
|
|
289 |
|
|
|
290 |
|
|
|
291 |
# choose limma result to identify subtype-specific DOWN-regulated biomarkers |
|
|
292 |
marker.dn <- runMarker(moic.res = cmoic.brca, |
|
|
293 |
dea.method = "limma", |
|
|
294 |
prefix = "de_TCGA-BRCA", |
|
|
295 |
dirct = "down", |
|
|
296 |
dat.path = getwd(), |
|
|
297 |
res.path = getwd(), |
|
|
298 |
p.cutoff = 0.05, # p cutoff to identify significant DEGs |
|
|
299 |
p.adj.cutoff = 0.05, # padj cutoff to identify significant DEGs |
|
|
300 |
n.marker = 200, # number of biomarkers for each subtype |
|
|
301 |
doplot = T, |
|
|
302 |
annCol = annCol, |
|
|
303 |
annColors = annColors, |
|
|
304 |
norm.expr = brca_dat[["MO"]][["Expression"]], |
|
|
305 |
fig.name = "UPREGULATED BIOMARKER HEATMAP") |
|
|
306 |
|
|
|
307 |
|
|
|
308 |
# subtype-specific UP-regulated biomarkers |
|
|
309 |
marker.up <- runMarker(moic.res = cmoic.brca, |
|
|
310 |
dea.method = "limma", |
|
|
311 |
prefix = "de_TCGA-BRCA", |
|
|
312 |
dirct = "up", |
|
|
313 |
dat.path = getwd(), |
|
|
314 |
res.path = getwd(), |
|
|
315 |
p.cutoff = 0.05, # p cutoff to identify significant DEGs |
|
|
316 |
p.adj.cutoff = 0.05, # padj cutoff to identify significant DEGs |
|
|
317 |
n.marker = 200, # number of biomarkers for each subtype |
|
|
318 |
doplot = T, |
|
|
319 |
annCol = annCol, |
|
|
320 |
annColors = annColors, |
|
|
321 |
norm.expr = brca_dat[["MO"]][["Expression"]], |
|
|
322 |
fig.name = "UPREGULATED BIOMARKER HEATMAP") |
|
|
323 |
|
|
|
324 |
|
|
|
325 |
# MUST locate ABSOLUTE path of msigdb file |
|
|
326 |
MSIGDB.FILE <- system.file("extdata", "c5.bp.v7.1.symbols.xls", package = "MOVICS", mustWork = TRUE) |
|
|
327 |
|
|
|
328 |
# # run GSEA to identify DOWN-regulated GO pathways using results from edgeR |
|
|
329 |
gsea.down <- runGSEA(moic.res = cmoic.brca, |
|
|
330 |
dea.method = "limma", # name of DEA method |
|
|
331 |
prefix = "de_TCGA-BRCA", # MUST be the same of argument in runDEA() |
|
|
332 |
dat.path = getwd(), # path of DEA files |
|
|
333 |
res.path = getwd(), # path to save GSEA files |
|
|
334 |
msigdb.path = MSIGDB.FILE, # MUST be the ABSOLUTE path of msigdb file |
|
|
335 |
norm.expr = brca_dat[["MO"]][["Expression"]], # use normalized expression to calculate enrichment score |
|
|
336 |
dirct = "down", # direction of dysregulation in pathway |
|
|
337 |
p.cutoff = 0.05, # p cutoff to identify significant pathways |
|
|
338 |
p.adj.cutoff = 0.25, # padj cutoff to identify significant pathways |
|
|
339 |
gsva.method = "gsva", # method to calculate single sample enrichment score |
|
|
340 |
norm.method = "mean", # normalization method to calculate subtype-specific enrichment score |
|
|
341 |
fig.name = "DOWNREGULATED PATHWAY HEATMAP") |
|
|
342 |
|
|
|
343 |
|
|
|
344 |
data.frame(gsea.down$gsea.list$CS2[1:6,3:6]) |
|
|
345 |
|
|
|
346 |
head(round(gsea.down$grouped.es,3)) |
|
|
347 |
|
|
|
348 |
# # run GSEA to identify up-regulated GO pathways using results from limma |
|
|
349 |
gsea.up <- runGSEA(moic.res = cmoic.brca, |
|
|
350 |
dea.method = "limma", # name of DEA method |
|
|
351 |
prefix = "detesting_TCGA-BRCA", # MUST be the same of argument in runDEA() |
|
|
352 |
dat.path = getwd(), # path of DEA files |
|
|
353 |
res.path = getwd(), # path to save GSEA files |
|
|
354 |
msigdb.path = MSIGDB.FILE, # MUST be the ABSOLUTE path of msigdb file |
|
|
355 |
norm.expr = brca_dat[["MO"]][["Expression"]], # use normalized expression to calculate enrichment score |
|
|
356 |
dirct = "up", # direction of dysregulation in pathway |
|
|
357 |
p.cutoff = 0.05, # p cutoff to identify significant pathways |
|
|
358 |
p.adj.cutoff = 0.25, # padj cutoff to identify significant pathways |
|
|
359 |
gsva.method = "gsva", # method to calculate single sample enrichment score |
|
|
360 |
norm.method = "mean", # normalization method to calculate subtype-specific enrichment score |
|
|
361 |
fig.name = "UPREGULATED PATHWAY HEATMAP") |
|
|
362 |
|
|
|
363 |
|
|
|
364 |
# MUST locate ABSOLUTE path of gene set file |
|
|
365 |
GSET.FILE <- |
|
|
366 |
system.file("extdata", "gene sets of interest.gmt", package = "MOVICS", mustWork = TRUE) |
|
|
367 |
|
|
|
368 |
# run GSVA to estimate single sample enrichment score based on given gene set of interest |
|
|
369 |
gsva.res <- |
|
|
370 |
runGSVA(moic.res = cmoic.brca, |
|
|
371 |
norm.expr = brca_dat[["MO"]][["Expression"]], |
|
|
372 |
gset.gmt.path = GSET.FILE, # ABSOLUTE path of gene set file |
|
|
373 |
gsva.method = "gsva", # method to calculate single sample enrichment score |
|
|
374 |
annCol = annCol, |
|
|
375 |
annColors = annColors, |
|
|
376 |
fig.path = getwd(), |
|
|
377 |
fig.name = "GENE SETS OF INTEREST HEATMAP", |
|
|
378 |
height = 5, |
|
|
379 |
width = 10) |
|
|
380 |
|
|
|
381 |
|
|
|
382 |
message("check raw enrichment score") |
|
|
383 |
gsva.res$raw.es[1:3,1:3] |
|
|
384 |
|
|
|
385 |
message("check z-scored and truncated enrichment score") |
|
|
386 |
gsva.res$scaled.es[1:3,1:3] |
|
|
387 |
|