[2ab972]: / R / amaretto_htmlreport.R

Download this file

405 lines (375 with data), 25.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#' AMARETTO_HTMLreport
#'
#' Retrieve an interactive html report, including gene set enrichment analysis if asked for.
#'
#' @param AMARETTOinit AMARETTO initialize output
#' @param AMARETTOresults AMARETTO results output
#' @param ProcessedData List of processed input data
#' @param SAMPLE_annotation SAMPLE annotation will be added to heatmap
#' @param ID ID column of the SAMPLE annotation data frame
#' @param hyper_geo_test_bool Boolean if a hyper geometric test needs to be performed. If TRUE provide a GMT file in the hyper_geo_reference parameter.
#' @param hyper_geo_reference GMT file with gene sets to compare with.
#' @param output_address Output directory for the html files.
#' @param show_row_names if True, sample names will appear in the heatmap
#' @param driverGSEA if TRUE, module drivers will also be included in the hypergeometric test.
#' @param phenotype_association_table a Data Frame, containing all modules phenotype association data. Optional.
#' @param MSIGDB TRUE if gene sets were retrieved from MSIGDB. Links will be created in the report.
#'
#' @import dplyr
#' @importFrom doParallel registerDoParallel
#' @importFrom DT datatable formatRound formatSignif formatStyle styleColorBar styleInterval
#' @importFrom reshape2 melt
#' @importFrom dplyr arrange group_by left_join mutate select summarise rename filter
#' @importFrom foreach foreach %dopar% %do%
#' @importFrom parallel makeCluster stopCluster
#' @importFrom knitr knit_meta
#' @importFrom utils write.table
#' @importFrom tibble rownames_to_column
#' @importFrom stats p.adjust phyper
#' @importFrom rmarkdown render
#' @return result
#' @export
#' @examples
#'\dontrun{
#' data('ProcessedDataLIHC')
#' AMARETTOinit <- AMARETTO_Initialize(ProcessedData = ProcessedDataLIHC,
#' NrModules = 2, VarPercentage = 50)
#'
#' AMARETTOresults <- AMARETTO_Run(AMARETTOinit)
#'
#' AMARETTO_HTMLreport(AMARETTOinit= AMARETTOinit,AMARETTOresults= AMARETTOresults,
#' ProcessedData = ProcessedDataLIHC,
#' hyper_geo_test_bool=FALSE,
#' output_address='./')
#'}
AMARETTO_HTMLreport <- function(AMARETTOinit,
AMARETTOresults,
ProcessedData,
show_row_names = FALSE,
SAMPLE_annotation = NULL,
ID = NULL,
hyper_geo_test_bool = FALSE,
hyper_geo_reference = NULL,
output_address = './',
MSIGDB = TRUE,
driverGSEA = TRUE,
phenotype_association_table=NULL){
`%dopar%` <- foreach::`%dopar%`
`%do%` <- foreach::`%do%`
CNV_matrix <- ProcessedData[[2]]
MET_matrix <- ProcessedData[[3]]
NrModules<-AMARETTOresults$NrModules
VarPercentage<-AMARETTOinit$Parameters$VarPercentage
NrCores<-AMARETTOinit$NrCores
if (!dir.exists(output_address)){
stop("Output directory is not existing.")
}
if (hyper_geo_test_bool==TRUE){
if (!file.exists(hyper_geo_reference)){
stop("GMT for hyper geometric test is not existing.\n")
}
}
report_address <- file.path(output_address)
dir.create(paste0(report_address,"/AMARETTOhtmls/modules"),recursive = TRUE,showWarnings = FALSE)
cat("The output folder structure is created.\n")
if (hyper_geo_test_bool){
GmtFromModules(AMARETTOinit,AMARETTOresults,driverGSEA)
output_hgt<-HyperGTestGeneEnrichment(hyper_geo_reference, "./Modules_genes.gmt",NrCores)
GeneSetDescriptions<-GeneSetDescription(hyper_geo_reference,MSIGDB)
}
cat("The hyper geometric test results are calculated.\n")
cluster <- parallel::makeCluster(c(rep("localhost", NrCores)), type = "SOCK")
doParallel::registerDoParallel(cluster,cores=NrCores)
full_path<-normalizePath(report_address)
ModuleOverviewTable<-NULL
buttons_list = list(list(extend ='csv'), list(extend ='excel'), list(extend = 'pdf', pageSize = 'A4', orientation = 'landscape'),list(extend ='print'), list(extend ='colvis'))
ModuleOverviewTable<-foreach (ModuleNr = 1:NrModules, .packages = c('AMARETTO','tidyverse','DT','rmarkdown')) %dopar% {
#for(ModuleNr in 1:NrModules){
print(paste0("ModuleNr = ",ModuleNr))
heatmap_module<-AMARETTO_VisualizeModule(AMARETTOinit, AMARETTOresults, ProcessedData, show_row_names = show_row_names, SAMPLE_annotation=SAMPLE_annotation, ID=ID, ModuleNr=ModuleNr)
print("visualization is done")
ModuleRegulators <- AMARETTOresults$RegulatoryPrograms[ModuleNr,which(AMARETTOresults$RegulatoryPrograms[ModuleNr,] != 0)]
print("ModuleRegulators is done")
dt_regulators<-DT::datatable(tibble::rownames_to_column(as.data.frame(ModuleRegulators),"RegulatorIDs") %>% dplyr::rename(Weights="ModuleRegulators")%>%mutate(Weights=signif(Weights, digits = 3)) %>% dplyr::mutate(RegulatorIDs=paste0('<a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=',RegulatorIDs,'">',RegulatorIDs,'</a>'))%>%dplyr::arrange(Weights),
class = 'display',filter = 'top', extensions = c('Buttons','KeyTable'), rownames = FALSE, options = list(
columnDefs = list(list(width = '200px',className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all")),pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',
buttons = buttons_list),colnames = c("Driver Gene", "Weight"),escape = 'Weight') %>% DT::formatStyle('Weights',color = DT::styleInterval(0, c('darkblue', 'darkred')))
print("dt_regulators is done")
dt_targets<-DT::datatable(as.data.frame(AMARETTOresults$ModuleMembership) %>% tibble::rownames_to_column("TargetIDs")%>% dplyr::arrange(TargetIDs) %>% dplyr::rename(moduleNr=ModuleNr) %>% dplyr::filter(moduleNr==ModuleNr) %>% dplyr::select(-moduleNr) %>% dplyr::mutate(TargetIDs=paste0('<a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=',TargetIDs,'">',TargetIDs,'</a>')),
class = 'display', filter = 'top', extensions = c('Buttons','KeyTable'), rownames = FALSE, options = list(
columnDefs = list(list(width = '200px',className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all")),pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',
buttons = buttons_list),colnames = c("Target Gene"),escape = FALSE)
print("dt_targets is done")
if (hyper_geo_test_bool){
output_hgt_filter<-output_hgt %>% dplyr::filter(Testset==paste0("Module_",as.character(ModuleNr))) %>% dplyr::arrange(padj)
output_hgt_filter<-dplyr::left_join(output_hgt_filter,GeneSetDescriptions,by=c("Geneset"="GeneSet")) %>% dplyr::mutate(overlap_perc=n_Overlapping/NumberGenes)%>%mutate(overlap_perc=signif(overlap_perc, digits = 3)) %>% dplyr::select(Geneset,Description,Geneset_length,n_Overlapping,Overlapping_genes,overlap_perc,p_value,padj)%>%arrange(padj)%>%mutate(Geneset_length=as.integer(Geneset_length),n_Overlapping=as.integer(n_Overlapping))
if (MSIGDB==TRUE){
dt_genesets<-DT::datatable(output_hgt_filter %>% dplyr::mutate(Geneset=paste0('<a href="http://software.broadinstitute.org/gsea/msigdb/cards/',Geneset,'">',gsub("_"," ",Geneset),'</a>')),class = 'display', filter = 'top', extensions = c('Buttons','KeyTable'), rownames = FALSE,
options = list(pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',buttons = buttons_list,columnDefs = list(list(className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all"))),
colnames=c("Gene Set Name","Gene Set Description","# Genes in Gene Set","# Genes in Overlap","Genes in Overlap","% Genes in overlap","P-value","FDR Q-value"),escape = FALSE) %>%
DT::formatSignif(c('p_value','padj','overlap_perc'),2) %>% DT::formatStyle('overlap_perc',background = DT::styleColorBar(c(0,1), 'lightblue'),backgroundSize = '98% 88%',backgroundRepeat = 'no-repeat', backgroundPosition = 'center')%>%DT::formatStyle(columns = c(5), fontSize = '60%')
}
else{
dt_genesets<-DT::datatable(output_hgt_filter,class = 'display', filter = 'top', extensions = c('Buttons','KeyTable'), rownames = FALSE,options = list(
columnDefs = list(list(className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all")),pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',
buttons = buttons_list)) %>% DT::formatSignif(c('p_value','padj','overlap_perc'),2)%>%DT::formatStyle(columns = c(6), fontSize = '60%')
}
ngenesets<-nrow(output_hgt_filter %>% dplyr::filter(padj<0.05))
} else {
dt_genesets<-"Genesets were not analysed as they were not provided."
ngenesets<-"NA"
}
print("hypergeotest is done")
if (!is.null(phenotype_association_table)){
moduleNumber<-ModuleNr
module_phenotype_association_datatable<-datatable(phenotype_association_table%>%mutate(p.value=signif(p.value, digits = 3),q.value=signif(q.value, digits = 3))%>%dplyr::filter(ModuleNr==paste0("Module ",moduleNumber))%>%arrange(q.value)%>%
dplyr::select(-ModuleNr),class='display',filter = 'top', extensions = c('Buttons','KeyTable'),rownames = FALSE,options = list(
pageLength = 10,lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',buttons = buttons_list),colnames=c("Phenotype","Statistics Test","P-value","FDR Q-value","Descriptive Statistics"),escape = FALSE)%>%DT::formatSignif(c('p.value','q.value'),2)
}
else{
module_phenotype_association_datatable<-"Phenotype association resuls were not provided."
}
print("phenotype is done!")
modulemd<-paste0(full_path,"/AMARETTOhtmls/modules/module",ModuleNr,".rmd")
file.copy(system.file("templates/TemplateReportModule.Rmd",package="AMARETTO"),modulemd)
print("file.copy is done!")
knitr::knit_meta(class=NULL, clean = TRUE)
rmarkdown::render(modulemd,output_file = paste0("module",ModuleNr,".html"), params = list(
report_address = report_address,
ModuleNr = ModuleNr,
heatmap_module = heatmap_module,
dt_regulators = dt_regulators,
dt_targets = dt_targets,
module_phenotype_association_datatable=module_phenotype_association_datatable,
dt_genesets = dt_genesets),quiet = TRUE)
print("rmarkdown is done and module html is created :)")
file.remove(modulemd)
#file.remove(paste0(full_path,"/AMARETTOhtmls/modules/module",ModuleNr,"_files"))
print("file removed successfully :) Done!")
#ModuleOverviewTable<-rbind(ModuleOverviewTable,c(ModuleNr,length(which(AMARETTOresults$ModuleMembership==ModuleNr)),length(ModuleRegulators),ngenesets))
return(c(ModuleNr,length(which(AMARETTOresults$ModuleMembership==ModuleNr)),length(ModuleRegulators),ngenesets))
dev.off()
# },error=function(e){message(paste("an error occured for Module", ModuleNr))})
}
file_remove<-suppressWarnings(suppressMessages(file.remove(paste0(full_path,"/AMARETTOhtmls/modules/module",c(1:NrModules),"_files"))))
parallel::stopCluster(cluster)
cat("The module htmls are finished.\n")
ModuleOverviewTable<-data.frame(matrix(unlist(ModuleOverviewTable),byrow=TRUE,ncol=4),stringsAsFactors=FALSE)
colnames(ModuleOverviewTable)<-c("ModuleNr","NrTarGenes","NrRegGenes","SignGS")
if (!is.null(CNV_matrix)){
nCNV = ncol(CNV_matrix)
} else {nCNV = NA}
if (!is.null(MET_matrix)){
nMET = ncol(MET_matrix)
} else {nMET = NA}
nExp = ncol(AMARETTOresults$RegulatoryProgramData)
nGenes = length(AMARETTOresults$AllGenes)
nMod = AMARETTOresults$NrModules
options('DT.warn.size'=FALSE) # avoid showing datatable size-related warnings.
dt_overview<-DT::datatable(ModuleOverviewTable %>% dplyr::mutate(ModuleNr=paste0('<a href="./modules/module',ModuleNr,'.html">Module ',ModuleNr,'</a>')),class = 'display',filter = 'top', extensions = c('Buttons','KeyTable'), rownames = FALSE,colnames =c("Module","# Target Genes", "# Driver Genes", "# Gene Sets"),
options = list(pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',buttons = buttons_list,columnDefs = list(list(className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all"))),escape = FALSE)
all_targets<-tibble::rownames_to_column(data.frame(AMARETTOresults$ModuleMembership),"Genes") %>% dplyr::rename(Module="ModuleNr") %>%dplyr::mutate(value=0)%>% dplyr::mutate(Type="Target")%>%select(Genes,Module,value,Type)
all_regulators<-reshape2::melt(tibble::rownames_to_column(as.data.frame(AMARETTOresults$RegulatoryPrograms),"Module"),id.vars = "Module") %>% dplyr::filter(value!=0) %>% dplyr::mutate(Module=sub("Module_","",Module),Type="Driver") %>% dplyr::rename(Genes='variable')%>%select(Genes,Module,value,Type)
all_genes<-rbind(all_targets,all_regulators) %>% dplyr::arrange(Genes) %>% dplyr::mutate(Genes=paste0('<a href="https://www.genecards.org/cgi-bin/carddisp.pl?gene=',Genes,'">',Genes,'</a>')) %>% dplyr::mutate(Module=paste0('<a href="./modules/module',Module,'.html">Module ',Module,'</a>'))
all_genes<-all_genes%>%dplyr::mutate(Color=sapply(as.numeric(value), function(x){
if(is.na(x)){
return("")
}
else if(x>0){
return("darkred")
}
else if(x<0){
return("darkblue")
}
else {
return("darkgreen")
}
}))%>%dplyr::mutate(Type=paste0('<font color=',Color,'>',Type,'</font>'))%>%select(-Color,-value)
all_genes<-as.matrix(all_genes)
dt_genes<-DT::datatable(all_genes, class = 'display',filter = 'top',extensions = c('Buttons','KeyTable'), rownames = FALSE,colnames =c("Gene","Module","Gene Type"),
options = list(deferRender=TRUE,columnDefs = list(list(className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all")), pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',buttons = buttons_list),escape = FALSE)
if (hyper_geo_test_bool){
genesetsall<-output_hgt %>% dplyr::left_join(GeneSetDescriptions,by=c("Geneset"="GeneSet")) %>% dplyr::mutate(Testset=paste0('<a href="./modules/module',sub("Module_","",Testset),'.html">',paste0(Testset,paste0(rep("&nbsp",14),collapse = "")),'</a>')) %>% dplyr::mutate(Modules=gsub("_","&nbsp",Testset))%>%dplyr::mutate(overlap_perc=n_Overlapping/NumberGenes)%>%mutate(overlap_perc=signif(overlap_perc, digits = 3))
genesetsall<-genesetsall%>%select(Modules,Geneset,Description,Geneset_length,n_Overlapping,Overlapping_genes,overlap_perc,p_value,padj)%>%arrange(padj)%>%filter(n_Overlapping>2)%>%mutate(Geneset_length=as.integer(Geneset_length),n_Overlapping=as.integer(n_Overlapping))
#genesetsall<-dplyr::left_join(output_hgt %>% dplyr::group_by(Geneset) %>% dplyr::mutate(Testset=paste0('<a href="./modules/module',sub("Module_","",Testset),'.html">',Testset,'</a>')) %>% dplyr::summarise(Modules=paste(Testset,collapse=", ")),GeneSetDescriptions,by=c("Geneset"="GeneSet")) %>% dplyr::mutate(Modules=gsub("_"," ",Modules))
if (MSIGDB==TRUE){
genesetsall<-dplyr::mutate(genesetsall,Geneset=paste0('<a href="http://software.broadinstitute.org/gsea/msigdb/cards/',Geneset,'">',gsub("_"," ",Geneset),'</a>'))
}
genesetsall<-as.matrix(genesetsall)
dt_genesetsall<-DT::datatable(genesetsall[1:10,],class = 'display',filter = 'top', extensions = c('Buttons'), rownames = FALSE,
options = list(data=genesetsall,deferRender=TRUE,paging =TRUE, pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',buttons = buttons_list,columnDefs = list(list(className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all"))),
colnames=c("Module","Gene Set Name","Gene Set Description","# Genes in Gene Set","# Genes in Overlap","Genes in Overlap","% Genes in overlap","P-value","FDR Q-value"),escape = FALSE)%>%
DT::formatSignif(c('p_value','padj','overlap_perc'),2) %>% DT::formatStyle('overlap_perc',background = DT::styleColorBar(c(0,1), 'lightblue'),backgroundSize = '98% 88%',backgroundRepeat = 'no-repeat', backgroundPosition = 'center')%>%DT::formatStyle(columns = c(6), fontSize = '60%')
}else{
dt_genesetsall<-"Genesets were not analysed as they were not provided."
}
if (!is.null(phenotype_association_table)){
phenotype_association_datatable<-DT::datatable(phenotype_association_table%>%mutate(p.value=signif(p.value, digits = 3),q.value=signif(q.value, digits = 3))%>%mutate(ModuleNr=paste0('<a href="./modules/module',gsub("Module ","",ModuleNr),'.html">',ModuleNr,'</a>'))%>%arrange(q.value),class='display',filter = 'top', extensions = c('Buttons','KeyTable'),rownames = FALSE,
options = list(pageLength = 10, lengthMenu = c(5, 10, 20, 50, 100), keys = TRUE, dom = 'Blfrtip',buttons = buttons_list,columnDefs = list(list(className = 'dt-head-center', targets = "_all"),list(className = 'text-left', targets = "_all"))),colnames=c("Module","Phenotype","Statistics Test","P-value","FDR Q-value","Descriptive Statistics"),escape = FALSE)%>%formatSignif(c('p.value','q.value'),2)
}
else{
phenotype_association_datatable<-"Phenotype association resuls were not provided."
}
rmarkdown::render(system.file("templates/TemplateIndexPage.Rmd",package="AMARETTO"), output_dir=paste0(full_path,"/AMARETTOhtmls/"),output_file= "index.html", params = list(
nExp = nExp,
nCNV = nCNV,
nMET = nMET,
nGenes = nGenes,
VarPercentage = VarPercentage,
nMod = nMod,
dt_overview = dt_overview,
dt_genes=dt_genes,
phenotype_association_datatable=phenotype_association_datatable,
dt_genesetsall = dt_gensesetsall),quiet = TRUE)
cat("The report is ready to use\n")
}
#' Hyper Geometric Geneset Enrichement Test
#'
#' Calculates the p-values for unranked gene set enrichment based on two gmt files as input and the hyper geometric test.
#' @return result
#' @param gmtfile The gmt file with reference gene set.
#' @param testgmtfile The gmt file with gene sets to test. In our case, the gmt file of the modules.
#' @param NrCores Number of cores used for parallelization.
#' @param ref.numb.genes The total number of genes teste, standard equal to 45 956 (MSIGDB standard).
#' @importFrom foreach foreach
#' @importFrom parallel makeCluster stopCluster
#' @importFrom doParallel registerDoParallel
#' @keywords internal
HyperGTestGeneEnrichment<-function(gmtfile,testgmtfile,NrCores,ref.numb.genes=45956){
`%dopar%` <- foreach::`%dopar%`
`%do%` <- foreach::`%do%`
test.gmt<-readGMT(testgmtfile) # our gmt_file_output_from Amaretto
gmt.path<-readGMT(gmtfile) # the hallmarks_and_co2...
########################### Parallelizing :
cluster <- parallel::makeCluster(c(rep("localhost", NrCores)), type = "SOCK")
doParallel::registerDoParallel(cluster,cores=NrCores)
#resultloop<-c()
resultloop<-foreach(j=1:length(test.gmt), .combine='rbind') %do% {
#print(j)
foreach(i=1:length(gmt.path),.combine='rbind') %dopar% {
#print(i)
# for(j in 1:length(test.gmt)){
# print(paste0("test_gmt = ",j))
# for(i in 1:length(gmt.path)){
l<-length(gmt.path[[i]])
k<-sum(gmt.path[[i]] %in% test.gmt[[j]])
m<-ref.numb.genes
n<-length(test.gmt[[j]])
p1<-stats::phyper(k-1,l,m-l,n,lower.tail=FALSE)
if (k>0){
overlapping.genes<-gmt.path[[i]][gmt.path[[i]] %in% test.gmt[[j]]]
overlapping.genes<-paste(overlapping.genes,collapse = ', ')
# resultloop<-rbind(resultloop,c(Geneset=names(gmt.path[i]),Testset=names(test.gmt[j]),p_value=p1,n_Overlapping=k,Overlapping_genes=overlapping.genes))
c(Geneset=names(gmt.path[i]),Testset=names(test.gmt[j]),Geneset_length=l,p_value=p1,n_Overlapping=k,Overlapping_genes=overlapping.genes)
}
}
}
parallel::stopCluster(cluster)
resultloop<-as.data.frame(resultloop,stringsAsFactors=FALSE)
resultloop$p_value<-as.numeric(resultloop$p_value)
resultloop$n_Overlapping<-as.numeric((resultloop$n_Overlapping))
resultloop$Geneset_length<-as.numeric(resultloop$Geneset_length)
resultloop[,"padj"]<-stats::p.adjust(resultloop[,"p_value"],method='BH')
return(resultloop)
}
#' GmtFromModules
#' @return result
#'
#' @param AMARETTOinit List output from AMARETTO_Initialize().
#' @param driverGSEA if TRUE , module driver genes will also be added to module target genes for GSEA.
#' @param AMARETTOresults List output from AMARETTO_Run().
#'
#' @importFrom tibble rownames_to_column
#' @importFrom reshape2 melt
#' @importFrom dplyr arrange mutate select rename filter
#' @importFrom utils write.table
#' @keywords internal
GmtFromModules <- function(AMARETTOinit,AMARETTOresults,driverGSEA){
ModuleMembership<-tibble::rownames_to_column(as.data.frame(AMARETTOresults$ModuleMembership),"GeneNames")
if(driverGSEA){
all_regulators <-reshape2::melt(tibble::rownames_to_column(as.data.frame(AMARETTOresults$RegulatoryPrograms),"Module"), id.vars = "Module") %>%
dplyr::filter(value > 0) %>% dplyr::select(variable, Module) %>% dplyr::mutate(Module = sub("Module_", "", Module)) %>% dplyr::rename(GeneNames = "variable")%>% dplyr::rename(ModuleNr = "Module")
ModuleMembership<-rbind(ModuleMembership,all_regulators)
}
NrModules<-AMARETTOresults$NrModules
ModuleMembership<-ModuleMembership %>% dplyr::arrange(GeneNames)
ModuleMembers_list<-split(ModuleMembership$GeneNames,ModuleMembership$ModuleNr)
names(ModuleMembers_list)<-paste0("Module_",names(ModuleMembers_list))
gmt_file="./Modules_genes.gmt"
utils::write.table(sapply(names(ModuleMembers_list),function(x) paste(x,paste(ModuleMembers_list[[x]],collapse="\t"),sep="\t")),gmt_file,quote = FALSE,row.names = TRUE,col.names = FALSE,sep='\t')
}
#' GeneSetDescription
#'
#' @param filename The name of the gmt file.
#' @param MSIGDB If True, the gene set description column will be provided from MSIGDB.
#'
#' @importFrom utils data
#' @return result
#' @keywords internal
GeneSetDescription<-function(filename,MSIGDB){
utils::data(MsigdbMapping)
gmtLines<-strsplit(readLines(filename),"\t")
gmtLines_description <- lapply(gmtLines, function(x) {
c(x[[1]],x[[2]],length(x)-2)
})
gmtLines_description<-data.frame(matrix(unlist(gmtLines_description),byrow=TRUE,ncol=3),stringsAsFactors=FALSE)
rownames(gmtLines_description)<-NULL
colnames(gmtLines_description)<-c("GeneSet","Description","NumberGenes")
gmtLines_description$NumberGenes<-as.numeric(gmtLines_description$NumberGenes)
if(MSIGDB){
gmtLines_description$Description<-sapply(gmtLines_description$GeneSet, function(x) {
index<-which(MsigdbMapping$geneset==x)
ifelse(length(index)!=0, MsigdbMapping$description[index],gmtLines_description$Description[which(gmtLines_description$GeneSet==x)])
})}
return(gmtLines_description)
}
#' readGMT
#'
#' @param filename
#'
#' @return result
#' @keywords internal
readGMT<-function(filename){
gmtLines<-strsplit(readLines(filename),"\t")
gmtLines_genes <- lapply(gmtLines, tail, -2)
names(gmtLines_genes) <- sapply(gmtLines, head, 1)
return(gmtLines_genes)
}
#' Title plot_run_history
#'
#' @param AMARETTOinit AMARETTO initialize output
#' @param AMARETTOresults AMARETTO results output
#'
#' @import ggplot2
#' @importFrom gridExtra grid.arrange
#' @importFrom stats sd
#' @return plot
#' @export
#'
#' @examples
#' data('ProcessedDataLIHC')
#' AMARETTOinit <- AMARETTO_Initialize(ProcessedData = ProcessedDataLIHC,
#' NrModules = 2, VarPercentage = 50)
#'
#' AMARETTOresults <- AMARETTO_Run(AMARETTOinit)
#'
#' plot_run_history(AMARETTOinit,AMARETTOresults)
plot_run_history<-function(AMARETTOinit,AMARETTOresults){
means<-unlist(lapply(AMARETTOresults$run_history$error_history, mean))
stds<-unlist(lapply(AMARETTOresults$run_history$error_history, sd))
iterationNr<-c(1:length(means))
NrReassignGenes<-AMARETTOresults$run_history$NrReassignGenes_history[-1]
threshold<-AMARETTOinit$Parameters$convergence_cutoff*nrow(AMARETTOinit$MA_matrix_Var)
TotGenesNr<-nrow(AMARETTOinit$MA_matrix_Var)
df<-data.frame(iterationNr = iterationNr,
means = means,
stds = stds,
NrReassignGenes = NrReassignGenes,
threshold = threshold,
TotGenesNr = TotGenesNr,
stringsAsFactors = FALSE)
p1<-ggplot2::qplot(x = iterationNr, y = means, data = df) + ggplot2::geom_errorbar(ggplot2::aes(x=iterationNr, ymin=means-stds, ymax=means+stds),data=df,width=0.25) + ggplot2::xlab("Iteration Number") + ggplot2::ylab("Mean Square Error") + ggplot2::geom_line() + ggplot2::geom_point()
p2<-ggplot2::qplot(x = iterationNr, y = NrReassignGenes) +ggplot2::geom_hline(yintercept = TotGenesNr, linetype="dashed", color = "blue")+ggplot2::geom_hline(yintercept = threshold, linetype="dashed", color = "red") + ggplot2::xlab("Iteration Number") + ggplot2::ylab("Target Gene Reassignments Number") + ggplot2::geom_line() + ggplot2::geom_point() + ggplot2::scale_y_continuous(trans='log2')
gridExtra::grid.arrange(p1, p2, nrow = 2)
return(TRUE)
}