|
a |
|
b/Laxity Testing/props_acl.inp |
|
|
1 |
** |
|
|
2 |
*CONNECTOR SECTION, ELSET=ACLpl_1D, BEHAVIOR=ACLpl_behavior |
|
|
3 |
AXIAL, |
|
|
4 |
** |
|
|
5 |
*CONNECTOR SECTION, ELSET=ACLam_1D, BEHAVIOR=ACLam_behavior |
|
|
6 |
AXIAL, |
|
|
7 |
** |
|
|
8 |
*PARAMETER |
|
|
9 |
ACLpl_num_sp_par = 2.0 |
|
|
10 |
ACLpl_num_sp_ser = 1.0 |
|
|
11 |
** ACLpl_L0=free length of the alPCL |
|
|
12 |
ACLpl_L0 = ACLpl_L / ACLpl_EREF |
|
|
13 |
** ACLpl_K1=calculated coefficient for non-linear stiffness range |
|
|
14 |
ACLpl_K1 = ACLpl_K2/4/ACLpl_L0/ACLpl_ET |
|
|
15 |
** Calculate reference relative displacements |
|
|
16 |
ACLpl_DF=ACLpl_L0-ACLpl_L-50 |
|
|
17 |
ACLpl_D0=(ACLpl_L0-ACLpl_L)/ACLpl_num_sp_ser |
|
|
18 |
ACLpl_D1=(ACLpl_L0*(1+ACLpl_ET/2)-ACLpl_L)/ACLpl_num_sp_ser |
|
|
19 |
ACLpl_D2=(ACLpl_L0*(1+ACLpl_ET)-ACLpl_L)/ACLpl_num_sp_ser |
|
|
20 |
ACLpl_D3=(ACLpl_L0*(1+ACLpl_ET*3/2)-ACLpl_L)/ACLpl_num_sp_ser |
|
|
21 |
ACLpl_D4=(ACLpl_L0*(1+2*ACLpl_ET)-ACLpl_L)/ACLpl_num_sp_ser |
|
|
22 |
ACLpl_D5=(ACLpl_L0*(1+4*ACLpl_ET)-ACLpl_L)/ACLpl_num_sp_ser |
|
|
23 |
ACLpl_D6=(ACLpl_L0*(1+10*ACLpl_ET)-ACLpl_L)/ACLpl_num_sp_ser |
|
|
24 |
** |
|
|
25 |
ACLpl_DD0=(ACLpl_L0-ACLpl_L) |
|
|
26 |
ACLpl_DD1=(ACLpl_L0*(1+ACLpl_ET/2)-ACLpl_L) |
|
|
27 |
ACLpl_DD2=(ACLpl_L0*(1+ACLpl_ET)-ACLpl_L) |
|
|
28 |
ACLpl_DD3=(ACLpl_L0*(1+ACLpl_ET*3/2)-ACLpl_L) |
|
|
29 |
ACLpl_DD4=(ACLpl_L0*(1+2*ACLpl_ET)-ACLpl_L) |
|
|
30 |
ACLpl_DD5=(ACLpl_L0*(1+4*ACLpl_ET)-ACLpl_L) |
|
|
31 |
ACLpl_DD6=(ACLpl_L0*(1+10*ACLpl_ET)-ACLpl_L) |
|
|
32 |
** Calculate reference ligament forces |
|
|
33 |
ACLpl_FF=0 |
|
|
34 |
ACLpl_F0=0 |
|
|
35 |
ACLpl_F1=(ACLpl_K1*(ACLpl_L+ACLpl_DD1-ACLpl_L0)**2)/ACLpl_num_sp_par |
|
|
36 |
ACLpl_F2=(ACLpl_K1*(ACLpl_L+ACLpl_DD2-ACLpl_L0)**2)/ACLpl_num_sp_par |
|
|
37 |
ACLpl_F3=(ACLpl_K1*(ACLpl_L+ACLpl_DD3-ACLpl_L0)**2)/ACLpl_num_sp_par |
|
|
38 |
ACLpl_F4=(ACLpl_K1*(ACLpl_L+ACLpl_DD4-ACLpl_L0)**2)/ACLpl_num_sp_par |
|
|
39 |
ACLpl_F5=(ACLpl_K2*(ACLpl_L+ACLpl_DD5-(1+ACLpl_ET)*ACLpl_L0))/ACLpl_num_sp_par |
|
|
40 |
ACLpl_F6=(ACLpl_K2*(ACLpl_L+ACLpl_DD6-(1+ACLpl_ET)*ACLpl_L0))/ACLpl_num_sp_par |
|
|
41 |
** |
|
|
42 |
*PARAMETER |
|
|
43 |
ACLam_num_sp_par = 2.0 |
|
|
44 |
ACLam_num_sp_ser = 1.0 |
|
|
45 |
** ACLam_L0=free length of the pmPCL |
|
|
46 |
ACLam_L0 = ACLam_L / ACLam_EREF |
|
|
47 |
** ACLam_K1=calculated coefficient for non-linear stiffness range |
|
|
48 |
ACLam_K1 = ACLam_K2/4/ACLam_L0/ACLam_ET |
|
|
49 |
** Calculate reference relative displacements |
|
|
50 |
ACLam_DF=ACLam_L0-ACLam_L-50 |
|
|
51 |
ACLam_D0=(ACLam_L0-ACLam_L)/ACLam_num_sp_ser |
|
|
52 |
ACLam_D1=(ACLam_L0*(1+ACLam_ET/2)-ACLam_L)/ACLam_num_sp_ser |
|
|
53 |
ACLam_D2=(ACLam_L0*(1+ACLam_ET)-ACLam_L)/ACLam_num_sp_ser |
|
|
54 |
ACLam_D3=(ACLam_L0*(1+ACLam_ET*3/2)-ACLam_L)/ACLam_num_sp_ser |
|
|
55 |
ACLam_D4=(ACLam_L0*(1+2*ACLam_ET)-ACLam_L)/ACLam_num_sp_ser |
|
|
56 |
ACLam_D5=(ACLam_L0*(1+4*ACLam_ET)-ACLam_L)/ACLam_num_sp_ser |
|
|
57 |
ACLam_D6=(ACLam_L0*(1+10*ACLam_ET)-ACLam_L)/ACLam_num_sp_ser |
|
|
58 |
** |
|
|
59 |
ACLam_DD0=(ACLam_L0-ACLam_L) |
|
|
60 |
ACLam_DD1=(ACLam_L0*(1+ACLam_ET/2)-ACLam_L) |
|
|
61 |
ACLam_DD2=(ACLam_L0*(1+ACLam_ET)-ACLam_L) |
|
|
62 |
ACLam_DD3=(ACLam_L0*(1+ACLam_ET*3/2)-ACLam_L) |
|
|
63 |
ACLam_DD4=(ACLam_L0*(1+2*ACLam_ET)-ACLam_L) |
|
|
64 |
ACLam_DD5=(ACLam_L0*(1+4*ACLam_ET)-ACLam_L) |
|
|
65 |
ACLam_DD6=(ACLam_L0*(1+10*ACLam_ET)-ACLam_L) |
|
|
66 |
** Calculate reference ligament forces |
|
|
67 |
ACLam_FF=0 |
|
|
68 |
ACLam_F0=0 |
|
|
69 |
ACLam_F1=(ACLam_K1*(ACLam_L+ACLam_DD1-ACLam_L0)**2)/ACLam_num_sp_par |
|
|
70 |
ACLam_F2=(ACLam_K1*(ACLam_L+ACLam_DD2-ACLam_L0)**2)/ACLam_num_sp_par |
|
|
71 |
ACLam_F3=(ACLam_K1*(ACLam_L+ACLam_DD3-ACLam_L0)**2)/ACLam_num_sp_par |
|
|
72 |
ACLam_F4=(ACLam_K1*(ACLam_L+ACLam_DD4-ACLam_L0)**2)/ACLam_num_sp_par |
|
|
73 |
ACLam_F5=(ACLam_K2*(ACLam_L+ACLam_DD5-(1+ACLam_ET)*ACLam_L0))/ACLam_num_sp_par |
|
|
74 |
ACLam_F6=(ACLam_K2*(ACLam_L+ACLam_DD6-(1+ACLam_ET)*ACLam_L0))/ACLam_num_sp_par |
|
|
75 |
** |
|
|
76 |
** |
|
|
77 |
** |
|
|
78 |
*CONNECTOR BEHAVIOR, NAME=ACLpl_behavior |
|
|
79 |
*CONNECTOR ELASTICITY, COMPONENT=1, NONLINEAR |
|
|
80 |
<ACLpl_FF> , <ACLpl_DF> |
|
|
81 |
<ACLpl_F0> , <ACLpl_D0> |
|
|
82 |
<ACLpl_F1> , <ACLpl_D1> |
|
|
83 |
<ACLpl_F2> , <ACLpl_D2> |
|
|
84 |
<ACLpl_F3> , <ACLpl_D3> |
|
|
85 |
<ACLpl_F4> , <ACLpl_D4> |
|
|
86 |
<ACLpl_F5> , <ACLpl_D5> |
|
|
87 |
<ACLpl_F6> , <ACLpl_D6> |
|
|
88 |
*CONNECTOR DAMPING, COMPONENT=1 |
|
|
89 |
0.05 |
|
|
90 |
** |
|
|
91 |
** |
|
|
92 |
*CONNECTOR BEHAVIOR, NAME=ACLam_behavior |
|
|
93 |
*CONNECTOR ELASTICITY, COMPONENT=1, NONLINEAR |
|
|
94 |
<ACLam_FF> , <ACLam_DF> |
|
|
95 |
<ACLam_F0> , <ACLam_D0> |
|
|
96 |
<ACLam_F1> , <ACLam_D1> |
|
|
97 |
<ACLam_F2> , <ACLam_D2> |
|
|
98 |
<ACLam_F3> , <ACLam_D3> |
|
|
99 |
<ACLam_F4> , <ACLam_D4> |
|
|
100 |
<ACLam_F5> , <ACLam_D5> |
|
|
101 |
<ACLam_F6> , <ACLam_D6> |
|
|
102 |
*CONNECTOR DAMPING, COMPONENT=1 |
|
|
103 |
0.05 |
|
|
104 |
** |
|
|
105 |
*MASS, ELSET=lig_acl_mass |
|
|
106 |
1E-6 |
|
|
107 |
*ROTARY INERTIA, ELSET=lig_acl_rot |
|
|
108 |
0.001,0.001,0.001 |
|
|
109 |
** |