--- a +++ b/README.md @@ -0,0 +1,90 @@ +<h1>About Dataset</h1> + +<h2>Vertebral Column Data Set</h2> + +<p> +<strong>Download:</strong> +<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/00212/" target="_blank">Data Folder</a> | +<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/00212/" target="_blank">Data Set Description</a> +</p> + +<h3>Abstract</h3> +<p> +This dataset contains values for six biomechanical features used to classify orthopaedic patients into either: +<ul> + <li>Three classes: Normal, Disk Hernia, or Spondylolisthesis</li> + <li>Or two classes: Normal or Abnormal</li> +</ul> +</p> + +<h3>Dataset Characteristics</h3> +<ul> + <li><strong>Type:</strong> Multivariate</li> + <li><strong>Attributes:</strong> Real-valued</li> + <li><strong>Associated Tasks:</strong> Classification</li> + <li><strong>Number of Instances:</strong> 310</li> + <li><strong>Number of Attributes:</strong> 6</li> + <li><strong>Missing Values:</strong> None</li> + <li><strong>Date Donated:</strong> 2011-08-09</li> +</ul> + +<h3>Source</h3> +<p> +Guilherme de Alencar Barreto (guilherme '@' deti.ufc.br)<br> +Ajalmar Rêgo da Rocha Neto (ajalmar '@' ifce.edu.br)<br> +Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil<br><br> +Henrique Antonio Fonseca da Mota Filho (hdamota '@' gmail.com)<br> +Hospital Monte Klinikum, Fortaleza, Brazil +</p> + +<h3>Data Set Information</h3> +<p> +The biomedical data was collected during a medical residency in the Group of Applied Research in Orthopaedics (GARO) at the Centre Médico-Chirurgical de Réadaptation des Massues in Lyon, France. The dataset supports two classification tasks: +</p> +<ol> + <li><strong>Three-class classification:</strong> + <ul> + <li>Normal – 100 patients</li> + <li>Disk Hernia – 60 patients</li> + <li>Spondylolisthesis – 150 patients</li> + </ul> + </li> + <li><strong>Binary classification:</strong> + <ul> + <li>Normal – 100 patients</li> + <li>Abnormal (Disk Hernia + Spondylolisthesis) – 210 patients</li> + </ul> + </li> +</ol> +<p> +Files formatted for use in the WEKA machine learning environment are also provided. +</p> + +<h3>Attribute Information</h3> +<p> +Each patient is described by six biomechanical attributes, derived from the shape and orientation of the pelvis and lumbar spine: +</p> +<ul> + <li>Pelvic incidence</li> + <li>Pelvic tilt</li> + <li>Lumbar lordosis angle</li> + <li>Sacral slope</li> + <li>Pelvic radius</li> + <li>Grade of spondylolisthesis</li> +</ul> +<p> +Class labels include: +<ul> + <li><strong>DH</strong> – Disk Hernia</li> + <li><strong>SL</strong> – Spondylolisthesis</li> + <li><strong>NO</strong> – Normal</li> + <li><strong>AB</strong> – Abnormal (binary classification)</li> +</ul> +</p> + +<h3>Relevant Papers</h3> +<ol> + <li>Berthonnaud, E., Dimnet, J., Roussouly, P. & Labelle, H. (2005). “Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters.” <em>Journal of Spinal Disorders & Techniques</em>, 18(1):40–47.</li> + <li>Rocha Neto, A. R. & Barreto, G. A. (2009). “On the Application of Ensembles of Classifiers to the Diagnosis of Pathologies of the Vertebral Column: A Comparative Analysis.” <em>IEEE Latin America Transactions</em>, 7(4):487–496.</li> + <li>Rocha Neto, A. R., Sousa, R., Barreto, G. A. & Cardoso, J. S. (2011). “Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option.” In <em>Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA'2011)</em>, Lecture Notes on Computer Science, Vol. 6669, pp. 588–595.</li> +</ol>