Diff of /README.md [000000] .. [960398]

Switch to unified view

a b/README.md
1
<h1>About Dataset</h1>
2
3
<h2>Vertebral Column Data Set</h2>
4
5
<p>
6
<strong>Download:</strong> 
7
<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/00212/" target="_blank">Data Folder</a> |
8
<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/00212/" target="_blank">Data Set Description</a>
9
</p>
10
11
<h3>Abstract</h3>
12
<p>
13
This dataset contains values for six biomechanical features used to classify orthopaedic patients into either:
14
<ul>
15
  <li>Three classes: Normal, Disk Hernia, or Spondylolisthesis</li>
16
  <li>Or two classes: Normal or Abnormal</li>
17
</ul>
18
</p>
19
20
<h3>Dataset Characteristics</h3>
21
<ul>
22
  <li><strong>Type:</strong> Multivariate</li>
23
  <li><strong>Attributes:</strong> Real-valued</li>
24
  <li><strong>Associated Tasks:</strong> Classification</li>
25
  <li><strong>Number of Instances:</strong> 310</li>
26
  <li><strong>Number of Attributes:</strong> 6</li>
27
  <li><strong>Missing Values:</strong> None</li>
28
  <li><strong>Date Donated:</strong> 2011-08-09</li>
29
</ul>
30
31
<h3>Source</h3>
32
<p>
33
Guilherme de Alencar Barreto (guilherme '@' deti.ufc.br)<br>
34
Ajalmar Rêgo da Rocha Neto (ajalmar '@' ifce.edu.br)<br>
35
Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil<br><br>
36
Henrique Antonio Fonseca da Mota Filho (hdamota '@' gmail.com)<br>
37
Hospital Monte Klinikum, Fortaleza, Brazil
38
</p>
39
40
<h3>Data Set Information</h3>
41
<p>
42
The biomedical data was collected during a medical residency in the Group of Applied Research in Orthopaedics (GARO) at the Centre Médico-Chirurgical de Réadaptation des Massues in Lyon, France. The dataset supports two classification tasks:
43
</p>
44
<ol>
45
  <li><strong>Three-class classification:</strong>
46
    <ul>
47
      <li>Normal – 100 patients</li>
48
      <li>Disk Hernia – 60 patients</li>
49
      <li>Spondylolisthesis – 150 patients</li>
50
    </ul>
51
  </li>
52
  <li><strong>Binary classification:</strong>
53
    <ul>
54
      <li>Normal – 100 patients</li>
55
      <li>Abnormal (Disk Hernia + Spondylolisthesis) – 210 patients</li>
56
    </ul>
57
  </li>
58
</ol>
59
<p>
60
Files formatted for use in the WEKA machine learning environment are also provided.
61
</p>
62
63
<h3>Attribute Information</h3>
64
<p>
65
Each patient is described by six biomechanical attributes, derived from the shape and orientation of the pelvis and lumbar spine:
66
</p>
67
<ul>
68
  <li>Pelvic incidence</li>
69
  <li>Pelvic tilt</li>
70
  <li>Lumbar lordosis angle</li>
71
  <li>Sacral slope</li>
72
  <li>Pelvic radius</li>
73
  <li>Grade of spondylolisthesis</li>
74
</ul>
75
<p>
76
Class labels include:
77
<ul>
78
  <li><strong>DH</strong> – Disk Hernia</li>
79
  <li><strong>SL</strong> – Spondylolisthesis</li>
80
  <li><strong>NO</strong> – Normal</li>
81
  <li><strong>AB</strong> – Abnormal (binary classification)</li>
82
</ul>
83
</p>
84
85
<h3>Relevant Papers</h3>
86
<ol>
87
  <li>Berthonnaud, E., Dimnet, J., Roussouly, P. & Labelle, H. (2005). “Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters.” <em>Journal of Spinal Disorders & Techniques</em>, 18(1):40–47.</li>
88
  <li>Rocha Neto, A. R. & Barreto, G. A. (2009). “On the Application of Ensembles of Classifiers to the Diagnosis of Pathologies of the Vertebral Column: A Comparative Analysis.” <em>IEEE Latin America Transactions</em>, 7(4):487–496.</li>
89
  <li>Rocha Neto, A. R., Sousa, R., Barreto, G. A. & Cardoso, J. S. (2011). “Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option.” In <em>Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA'2011)</em>, Lecture Notes on Computer Science, Vol. 6669, pp. 588–595.</li>
90
</ol>