|
a |
|
b/README.md |
|
|
1 |
<h1>About Dataset</h1> |
|
|
2 |
|
|
|
3 |
<h2>Vertebral Column Data Set</h2> |
|
|
4 |
|
|
|
5 |
<p> |
|
|
6 |
<strong>Download:</strong> |
|
|
7 |
<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/00212/" target="_blank">Data Folder</a> | |
|
|
8 |
<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/00212/" target="_blank">Data Set Description</a> |
|
|
9 |
</p> |
|
|
10 |
|
|
|
11 |
<h3>Abstract</h3> |
|
|
12 |
<p> |
|
|
13 |
This dataset contains values for six biomechanical features used to classify orthopaedic patients into either: |
|
|
14 |
<ul> |
|
|
15 |
<li>Three classes: Normal, Disk Hernia, or Spondylolisthesis</li> |
|
|
16 |
<li>Or two classes: Normal or Abnormal</li> |
|
|
17 |
</ul> |
|
|
18 |
</p> |
|
|
19 |
|
|
|
20 |
<h3>Dataset Characteristics</h3> |
|
|
21 |
<ul> |
|
|
22 |
<li><strong>Type:</strong> Multivariate</li> |
|
|
23 |
<li><strong>Attributes:</strong> Real-valued</li> |
|
|
24 |
<li><strong>Associated Tasks:</strong> Classification</li> |
|
|
25 |
<li><strong>Number of Instances:</strong> 310</li> |
|
|
26 |
<li><strong>Number of Attributes:</strong> 6</li> |
|
|
27 |
<li><strong>Missing Values:</strong> None</li> |
|
|
28 |
<li><strong>Date Donated:</strong> 2011-08-09</li> |
|
|
29 |
</ul> |
|
|
30 |
|
|
|
31 |
<h3>Source</h3> |
|
|
32 |
<p> |
|
|
33 |
Guilherme de Alencar Barreto (guilherme '@' deti.ufc.br)<br> |
|
|
34 |
Ajalmar Rêgo da Rocha Neto (ajalmar '@' ifce.edu.br)<br> |
|
|
35 |
Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil<br><br> |
|
|
36 |
Henrique Antonio Fonseca da Mota Filho (hdamota '@' gmail.com)<br> |
|
|
37 |
Hospital Monte Klinikum, Fortaleza, Brazil |
|
|
38 |
</p> |
|
|
39 |
|
|
|
40 |
<h3>Data Set Information</h3> |
|
|
41 |
<p> |
|
|
42 |
The biomedical data was collected during a medical residency in the Group of Applied Research in Orthopaedics (GARO) at the Centre Médico-Chirurgical de Réadaptation des Massues in Lyon, France. The dataset supports two classification tasks: |
|
|
43 |
</p> |
|
|
44 |
<ol> |
|
|
45 |
<li><strong>Three-class classification:</strong> |
|
|
46 |
<ul> |
|
|
47 |
<li>Normal – 100 patients</li> |
|
|
48 |
<li>Disk Hernia – 60 patients</li> |
|
|
49 |
<li>Spondylolisthesis – 150 patients</li> |
|
|
50 |
</ul> |
|
|
51 |
</li> |
|
|
52 |
<li><strong>Binary classification:</strong> |
|
|
53 |
<ul> |
|
|
54 |
<li>Normal – 100 patients</li> |
|
|
55 |
<li>Abnormal (Disk Hernia + Spondylolisthesis) – 210 patients</li> |
|
|
56 |
</ul> |
|
|
57 |
</li> |
|
|
58 |
</ol> |
|
|
59 |
<p> |
|
|
60 |
Files formatted for use in the WEKA machine learning environment are also provided. |
|
|
61 |
</p> |
|
|
62 |
|
|
|
63 |
<h3>Attribute Information</h3> |
|
|
64 |
<p> |
|
|
65 |
Each patient is described by six biomechanical attributes, derived from the shape and orientation of the pelvis and lumbar spine: |
|
|
66 |
</p> |
|
|
67 |
<ul> |
|
|
68 |
<li>Pelvic incidence</li> |
|
|
69 |
<li>Pelvic tilt</li> |
|
|
70 |
<li>Lumbar lordosis angle</li> |
|
|
71 |
<li>Sacral slope</li> |
|
|
72 |
<li>Pelvic radius</li> |
|
|
73 |
<li>Grade of spondylolisthesis</li> |
|
|
74 |
</ul> |
|
|
75 |
<p> |
|
|
76 |
Class labels include: |
|
|
77 |
<ul> |
|
|
78 |
<li><strong>DH</strong> – Disk Hernia</li> |
|
|
79 |
<li><strong>SL</strong> – Spondylolisthesis</li> |
|
|
80 |
<li><strong>NO</strong> – Normal</li> |
|
|
81 |
<li><strong>AB</strong> – Abnormal (binary classification)</li> |
|
|
82 |
</ul> |
|
|
83 |
</p> |
|
|
84 |
|
|
|
85 |
<h3>Relevant Papers</h3> |
|
|
86 |
<ol> |
|
|
87 |
<li>Berthonnaud, E., Dimnet, J., Roussouly, P. & Labelle, H. (2005). “Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters.” <em>Journal of Spinal Disorders & Techniques</em>, 18(1):40–47.</li> |
|
|
88 |
<li>Rocha Neto, A. R. & Barreto, G. A. (2009). “On the Application of Ensembles of Classifiers to the Diagnosis of Pathologies of the Vertebral Column: A Comparative Analysis.” <em>IEEE Latin America Transactions</em>, 7(4):487–496.</li> |
|
|
89 |
<li>Rocha Neto, A. R., Sousa, R., Barreto, G. A. & Cardoso, J. S. (2011). “Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option.” In <em>Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA'2011)</em>, Lecture Notes on Computer Science, Vol. 6669, pp. 588–595.</li> |
|
|
90 |
</ol> |