Card

About Dataset

Vertebral Column Data Set

Abstract

This dataset contains values for six biomechanical features used to classify orthopaedic patients into either:

  • Three classes: Normal, Disk Hernia, or Spondylolisthesis
  • Or two classes: Normal or Abnormal

Dataset Characteristics

  • Type: Multivariate
  • Attributes: Real-valued
  • Associated Tasks: Classification
  • Number of Instances: 310
  • Number of Attributes: 6
  • Missing Values: None
  • Date Donated: 2011-08-09

Source

Guilherme de Alencar Barreto (guilherme '@' deti.ufc.br)
Ajalmar Rêgo da Rocha Neto (ajalmar '@' ifce.edu.br)
Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil

Henrique Antonio Fonseca da Mota Filho (hdamota '@' gmail.com)
Hospital Monte Klinikum, Fortaleza, Brazil

Data Set Information

The biomedical data was collected during a medical residency in the Group of Applied Research in Orthopaedics (GARO) at the Centre Médico-Chirurgical de Réadaptation des Massues in Lyon, France. The dataset supports two classification tasks:

  1. Three-class classification:
    • Normal – 100 patients
    • Disk Hernia – 60 patients
    • Spondylolisthesis – 150 patients
  2. Binary classification:
    • Normal – 100 patients
    • Abnormal (Disk Hernia + Spondylolisthesis) – 210 patients

Files formatted for use in the WEKA machine learning environment are also provided.

Attribute Information

Each patient is described by six biomechanical attributes, derived from the shape and orientation of the pelvis and lumbar spine:

  • Pelvic incidence
  • Pelvic tilt
  • Lumbar lordosis angle
  • Sacral slope
  • Pelvic radius
  • Grade of spondylolisthesis

Class labels include:

  • DH – Disk Hernia
  • SL – Spondylolisthesis
  • NO – Normal
  • AB – Abnormal (binary classification)

Relevant Papers

  1. Berthonnaud, E., Dimnet, J., Roussouly, P. & Labelle, H. (2005). “Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters.” Journal of Spinal Disorders & Techniques, 18(1):40–47.
  2. Rocha Neto, A. R. & Barreto, G. A. (2009). “On the Application of Ensembles of Classifiers to the Diagnosis of Pathologies of the Vertebral Column: A Comparative Analysis.” IEEE Latin America Transactions, 7(4):487–496.
  3. Rocha Neto, A. R., Sousa, R., Barreto, G. A. & Cardoso, J. S. (2011). “Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option.” In Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA'2011), Lecture Notes on Computer Science, Vol. 6669, pp. 588–595.