[853718]: / bm_ANHIR / evaluate_submission.py

Download this file

568 lines (483 with data), 24.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
"""
Evaluating passed experiments, for instance if metric was changed
The expected submission structure and required files:
* `registration-results.csv` - cover file with experimental results
* `computer-performances.json` - computer performance evaluation
* landmarks in CSV files with relative path described
in `registration-results.csv` in column 'Warped source landmarks'
The required files in the reference (ground truth):
* `dataset.csv` - cover file with planed registrations
* `computer-performances.json` - reference performance evaluation
* `lnds_provided/` provided landmarks in CSV files with relative path described
in `dataset.csv` in column 'Source landmarks'
* `lnds_reference/` reference (ground truth) landmarks in CSV files with relative
path described in `dataset_cover.csv` in both columns 'Target landmarks'
and 'Source landmarks'
Sample usage::
python evaluate_submission.py \
-e ./results/BmUnwarpJ \
-t ./data-images/pairs-imgs-lnds_histol.csv \
-d ./data-images \
-r ./data-images \
-p ./bm_experiments/computer-performances_cmpgrid-71.json \
-o ./output \
--min_landmarks 0.20
DOCKER
------
Running in grad-challenge.org environment::
python evaluate_submission.py \
-e /input \
-t /opt/evaluation/dataset.csv \
-d /opt/evaluation/lnds_provided \
-r /opt/evaluation/lnds_reference \
-p /opt/evaluation/computer-performances.json \
-o /output \
--min_landmarks 0.20
or run locally::
python bm_ANHIR/evaluate_submission.py \
-e bm_ANHIR/submission \
-t bm_ANHIR/dataset_ANHIR/dataset_medium.csv \
-d bm_ANHIR/dataset_ANHIR/landmarks_user_phase2 \
-r bm_ANHIR/dataset_ANHIR/landmarks_all \
-p bm_ANHIR/dataset_ANHIR/computer-performances_cmpgrid-71.json \
-o bm_ANHIR/output \
--min_landmarks 1.0
References:
* https://grand-challengeorg.readthedocs.io/en/latest/evaluation.html
Copyright (C) 2018-2019 Jiri Borovec <jiri.borovec@fel.cvut.cz>
"""
import argparse
import json
import logging
import os
import re
import sys
import time
from functools import partial
import numpy as np
import pandas as pd
sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root
from birl.benchmark import _df_drop_unnamed, COL_PAIRED_LANDMARKS, filter_paired_landmarks, ImRegBenchmark
from birl.utilities.data_io import create_folder, load_landmarks, save_landmarks, update_path
from birl.utilities.dataset import parse_path_scale
from birl.utilities.experiments import FORMAT_DATE_TIME, get_nb_workers, iterate_mproc_map, parse_arg_params
NB_WORKERS = get_nb_workers(0.9)
NAME_CSV_RESULTS = 'registration-results.csv'
NAME_JSON_COMPUTER = 'computer-performances.json'
NAME_JSON_RESULTS = 'metrics.json'
COL_NORM_TIME = 'Norm. execution time [minutes]'
COL_TISSUE = 'Tissue kind'
# FOLDER_FILTER_DATASET = 'filtered dataset'
CMP_THREADS = ('1', 'n')
#: Require having initial overlap as the warped is tricky as some image pairs do not
# have the same nb points, so recommend to set it as False
REQUIRE_OVERLAP_INIT_TARGET = False
def create_parser():
""" parse the input parameters
:return dict: parameters
"""
# SEE: https://docs.python.org/3/library/argparse.html
parser = argparse.ArgumentParser()
parser.add_argument(
'-e', '--path_experiment', type=str, required=True, help='path to the experiments', default='/input/'
)
parser.add_argument(
'-t',
'--path_table',
type=str,
required=True,
help='path to cover table (csv file)',
default='/opt/evaluation/dataset.csv'
)
parser.add_argument(
'-d',
'--path_dataset',
type=str,
required=True,
help='path to dataset with provided landmarks',
default='/opt/evaluation/provided'
)
parser.add_argument(
'-r', '--path_reference', type=str, required=False, help='path to complete ground truth landmarks'
)
parser.add_argument(
'-p', '--path_comp_bm', type=str, required=False, help='path to reference computer performance JSON'
)
parser.add_argument(
'-o', '--path_output', type=str, required=True, help='path to output results', default='/output/'
)
# required number of submitted landmarks, match values in COL_PAIRED_LANDMARKS
parser.add_argument(
'--min_landmarks', type=float, required=False, default=0.5, help='ration of required landmarks in submission'
)
# parser.add_argument('--nb_workers', type=int, required=False, default=NB_WORKERS,
# help='number of processes in parallel')
parser.add_argument(
'--details', action='store_true', required=False, default=False, help='export details for each case'
)
return parser
def filter_export_landmarks(idx_row, path_output, path_dataset, path_reference):
""" filter all relevant landmarks which were used and copy them to experiment
The case is that in certain challenge stage users had provided just a subset
of all image landmarks which could be laos shuffled. The idea is to filter identify
all user used (provided in dataset) landmarks and filter them from temporary
reference dataset.
:param tuple(idx,dict|Series) idx_row: experiment DataFrame
:param str path_output: path to output folder
:param str path_dataset: path to provided landmarks
:param str path_reference: path to the complete landmark collection
:return tuple(idx,float): record index and match ratio
"""
idx, row = idx_row
ratio_matches, lnds_filter_ref, lnds_filter_move = \
filter_paired_landmarks(row, path_dataset, path_reference,
ImRegBenchmark.COL_POINTS_MOVE,
ImRegBenchmark.COL_POINTS_REF)
# moving and reference landmarks
for col, lnds_flt in [(ImRegBenchmark.COL_POINTS_REF, lnds_filter_ref),
(ImRegBenchmark.COL_POINTS_MOVE, lnds_filter_move)]:
path_out = update_path(row[col], pre_path=path_output)
create_folder(os.path.dirname(path_out), ok_existing=True)
if os.path.isfile(path_out):
if not np.array_equal(load_landmarks(path_out), lnds_flt):
raise ValueError('overwrite different set of landmarks')
save_landmarks(path_out, lnds_flt)
return idx, ratio_matches
def normalize_exec_time(df_experiments, path_experiments, path_comp_bm=None):
""" normalize execution times if reference and experiment computer is given
:param DF df_experiments: experiment DataFrame
:param str path_experiments: path to experiment folder
:param str path_comp_bm: path to reference comp. benchmark
"""
path_comp_bm_expt = os.path.join(path_experiments, NAME_JSON_COMPUTER)
if ImRegBenchmark.COL_TIME not in df_experiments.columns:
logging.warning('Missing %s among result columns.', ImRegBenchmark.COL_TIME)
return
if not path_comp_bm:
logging.warning('Reference comp. perform. not specified.')
return
if not all(os.path.isfile(p) for p in [path_comp_bm, path_comp_bm_expt]):
logging.warning(
'Missing one of the JSON files: \n %s (%s)\n %s (%s)', path_comp_bm, os.path.isfile(path_comp_bm),
path_comp_bm_expt, os.path.isfile(path_comp_bm_expt)
)
return
logging.info('Normalizing the Execution time.')
with open(path_comp_bm, 'r') as fp:
comp_ref = json.load(fp)
with open(path_comp_bm_expt, 'r') as fp:
comp_exp = json.load(fp)
time_ref = np.mean([comp_ref['registration @%s-thread' % i] for i in CMP_THREADS])
time_exp = np.mean([comp_exp['registration @%s-thread' % i] for i in CMP_THREADS])
coef = time_ref / time_exp
df_experiments[COL_NORM_TIME] = df_experiments[ImRegBenchmark.COL_TIME] * coef
def parse_landmarks(idx_row):
""" parse the warped landmarks and reference and save them as cases
:param tuple(int,series) idx_row: individual row
:return {str: float|[]}: parsed registration pair
"""
idx, row = idx_row
row = dict(row)
# lnds_ref = load_landmarks(update_path_(row[COL_POINTS_REF], path_experiments))
# lnds_warp = load_landmarks(update_path_(row[COL_POINTS_MOVE_WARP], path_experiments))
# if isinstance(row[COL_POINTS_MOVE_WARP], str)else np.array([[]])
path_dir = os.path.dirname(row[ImRegBenchmark.COL_POINTS_MOVE])
match_lnds = np.nan_to_num(row[COL_PAIRED_LANDMARKS]) if COL_PAIRED_LANDMARKS in row else 0.
item = {
'name-tissue': os.path.basename(os.path.dirname(path_dir)),
'scale-tissue': parse_path_scale(os.path.basename(path_dir)),
'type-tissue': row.get(COL_TISSUE),
'name-reference': os.path.splitext(os.path.basename(row[ImRegBenchmark.COL_POINTS_REF]))[0],
'name-source': os.path.splitext(os.path.basename(row[ImRegBenchmark.COL_POINTS_MOVE]))[0],
# 'reference landmarks': np.round(lnds_ref, 1).tolist(),
# 'warped landmarks': np.round(lnds_warp, 1).tolist(),
'matched-landmarks': match_lnds,
'Robustness': np.round(row.get(ImRegBenchmark.COL_ROBUSTNESS, 0), 3),
'Norm-Time_minutes': np.round(row.get(COL_NORM_TIME), 5),
'Status': row.get(ImRegBenchmark.COL_STATUS),
}
def _round_val(row, col):
dec = 5 if col.startswith('rTRE') else 2
return np.round(row[col], dec)
# copy all columns with Affine statistic
item.update({col.replace(' ', '-'): _round_val(row, col) for col in row if 'affine' in col.lower()})
# copy all columns with rTRE, TRE and Overlap
# item.update({col.replace(' (final)', '').replace(' ', '-'): row[col]
# for col in row if '(final)' in col})
item.update({
col.replace(' (elastic)', '_elastic').replace(' ', '-'): _round_val(row, col)
for col in row if 'TRE' in col
})
# later in JSON keys ahs to be str only
return str(idx), item
def compute_scores(df_experiments, min_landmarks=1.):
""" compute all main metrics
.. seealso:: https://anhir.grand-challenge.org/Evaluation/
:param DF df_experiments: complete experiments
:param float min_landmarks: required number of submitted landmarks in range (0, 1),
match values in COL_PAIRED_LANDMARKS
:return dict: results
"""
# if the initial overlap and submitted overlap do not mach, drop results
if 'overlap points (target)' not in df_experiments.columns:
raise ValueError('Missing `overlap points (target)` column, because there are probably missing wrap landmarks.')
unpaired = df_experiments[COL_PAIRED_LANDMARKS] < min_landmarks
hold_overlap = df_experiments['overlap points (init)'] == df_experiments['overlap points (target)']
mask_incomplete = unpaired.copy()
if REQUIRE_OVERLAP_INIT_TARGET:
mask_incomplete |= ~hold_overlap
# rewrite incomplete cases by initial stat
if sum(mask_incomplete) > 0:
for col_f, col_i in zip(*_filter_tre_measure_columns(df_experiments)):
df_experiments.loc[mask_incomplete, col_f] = df_experiments.loc[mask_incomplete, col_i]
df_experiments.loc[mask_incomplete, ImRegBenchmark.COL_ROBUSTNESS] = 0.
logging.warning(
'There are %i cases which incomplete landmarks - unpaired %i & missed overlap %i.',
sum(mask_incomplete),
sum(unpaired),
sum(~hold_overlap),
)
df_expt_robust = df_experiments[df_experiments[ImRegBenchmark.COL_ROBUSTNESS] > 0.5]
pd.set_option('expand_frame_repr', False)
# pre-compute some optional metrics
score_used_lnds = np.mean(df_expt_robust[COL_PAIRED_LANDMARKS]) \
if COL_PAIRED_LANDMARKS in df_experiments.columns else 0
# parse specific metrics
scores = {'Average-used-landmarks': score_used_lnds}
scores.update(_compute_scores_general(df_experiments, df_expt_robust))
scores.update(_compute_scores_state_tissue(df_experiments))
return scores
def _compute_scores_general(df_experiments, df_expt_robust):
# parse specific metrics
scores = {
'Average-Robustness': np.mean(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]),
'STD-Robustness': np.std(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]),
'Median-Robustness': np.median(df_experiments[ImRegBenchmark.COL_ROBUSTNESS]),
'Average-Rank-Median-rTRE': np.nan,
'Average-Rank-Max-rTRE': np.nan,
}
# parse Mean & median specific measures
for name, col in [('Median-rTRE', 'rTRE Median'), ('Max-rTRE', 'rTRE Max'), ('Average-rTRE', 'rTRE Mean'),
('Norm-Time', COL_NORM_TIME)]:
for df, sufix in [(df_experiments, ''), (df_expt_robust, '-Robust')]:
scores['Average-' + name + sufix] = np.nanmean(df[col])
scores['STD-' + name + sufix] = np.nanstd(df[col])
scores['Median-' + name + sufix] = np.median(df[col])
return scores
def _compute_scores_state_tissue(df_experiments):
scores = {}
if ImRegBenchmark.COL_STATUS not in df_experiments.columns:
logging.warning('experiments (table) is missing "%s" column', ImRegBenchmark.COL_STATUS)
df_experiments[ImRegBenchmark.COL_STATUS] = 'any'
# filter all statuses in the experiments
statuses = df_experiments[ImRegBenchmark.COL_STATUS].unique()
# parse metrics according to TEST and TRAIN case
for name, col in [('Average-rTRE', 'rTRE Mean'), ('Median-rTRE', 'rTRE Median'), ('Max-rTRE', 'rTRE Max'),
('Robustness', 'Robustness')]:
# iterate over common measures
for stat_name, stat_func in [('Average', np.mean), ('Median', np.median)]:
_sname = '%s-%s' % (stat_name, name)
for status in statuses:
df_expt_ = df_experiments[df_experiments[ImRegBenchmark.COL_STATUS] == status]
scores['%s_%s' % (_sname, status)] = stat_func(df_expt_[col])
# parse according to Tissue
for tissue, dfg_tissue in df_experiments.groupby(COL_TISSUE):
scores['%s__tissue_%s__All' % (_sname, tissue)] = stat_func(dfg_tissue[col])
# also per state in tissue
for status in statuses:
df_tiss_st_ = dfg_tissue[dfg_tissue[ImRegBenchmark.COL_STATUS] == status]
stat = stat_func(df_tiss_st_[col]) if not df_tiss_st_.empty else np.nan
scores['%s__tissue_%s__%s' % (_sname, tissue, status)] = stat
return scores
def _filter_tre_measure_columns(df_experiments):
""" get columns related to TRE measures
:param DF df_experiments: experiment table
:return tuple(list(str),list(str)):
"""
# copy the initial to final for missing
cols_init = [col for col in df_experiments.columns if re.match(r'(r)?IRE', col)]
cols_final = [col.replace('IRE', 'TRE') for col in cols_init]
if len(cols_final) != len(cols_init):
raise ValueError('columns do not match for future zip')
return cols_final, cols_init
def export_summary_json(df_experiments, path_experiments, path_output, min_landmarks=1., details=True):
""" summarize results in particular JSON format
:param DF df_experiments: experiment DataFrame
:param str path_experiments: path to experiment folder
:param str path_output: path to generated results
:param float min_landmarks: required number of submitted landmarks in range (0, 1),
match values in COL_PAIRED_LANDMARKS
:param bool details: exporting case details
:return str: path to exported results
"""
if COL_NORM_TIME not in df_experiments.columns:
df_experiments[COL_NORM_TIME] = np.nan
# note, we expect that the path starts with tissue and Unix sep "/" is used
def _get_tissue(cell):
tissue = cell.split(os.sep)[0]
return tissue[:tissue.index('_')] if '_' in cell else tissue
df_experiments[COL_TISSUE] = df_experiments[ImRegBenchmark.COL_POINTS_REF].apply(_get_tissue)
# export partial results
cases = list(iterate_mproc_map(parse_landmarks, df_experiments.iterrows(), desc='Parsing landmarks', nb_workers=1))
# copy the initial to final for missing
for col, col2 in zip(*_filter_tre_measure_columns(df_experiments)):
mask = df_experiments[col].isnull()
df_experiments.loc[mask, col] = df_experiments.loc[mask, col2]
# parse final metrics
scores = compute_scores(df_experiments, min_landmarks)
path_comp_bm_expt = os.path.join(path_experiments, NAME_JSON_COMPUTER)
if os.path.isfile(path_comp_bm_expt):
with open(path_comp_bm_expt, 'r') as fp:
comp_exp = json.load(fp)
else:
comp_exp = None
results = {
'aggregates': scores,
'cases': dict(cases) if details else 'not exported',
'computer': comp_exp,
'submission-time': time.strftime(FORMAT_DATE_TIME, time.gmtime()),
'required-landmarks': min_landmarks,
}
path_json = os.path.join(path_output, NAME_JSON_RESULTS)
logging.info('exporting JSON results: %s', path_json)
with open(path_json, 'w') as fp:
json.dump(results, fp)
return path_json
def replicate_missing_warped_landmarks(df_experiments, path_dataset, path_experiment):
""" if some warped landmarks are missing replace the path by initial landmarks
:param DF df_experiments: experiment table
:param str path_dataset: path to dataset folder
:param str path_experiment: path ti user experiment folder
:return DF: experiment table
"""
# find empty warped landmarks paths
missing_mask = df_experiments[ImRegBenchmark.COL_POINTS_MOVE_WARP].isnull()
if ImRegBenchmark.COL_POINTS_REF_WARP in df_experiments.columns:
# if there ar elaso target warped landmarks, allow to use them
missing_mask &= df_experiments[ImRegBenchmark.COL_POINTS_REF_WARP].isnull()
# for the empty place the initial landmarks
df_experiments.loc[missing_mask, ImRegBenchmark.COL_POINTS_MOVE_WARP] = \
df_experiments.loc[missing_mask, ImRegBenchmark.COL_POINTS_MOVE]
# for the empty place maximal execution time
df_experiments.loc[missing_mask, ImRegBenchmark.COL_TIME] = \
df_experiments[ImRegBenchmark.COL_TIME].max()
count = 0
# iterate over whole table and check if the path is valid
for idx, row in df_experiments.iterrows():
# select refence/moving warped landmarks
use_move_warp = isinstance(row.get(ImRegBenchmark.COL_POINTS_MOVE_WARP), str)
col_lnds_warp = ImRegBenchmark.COL_POINTS_MOVE_WARP \
if use_move_warp else ImRegBenchmark.COL_POINTS_REF_WARP
# extract the CSV path
path_csv = update_path(row[col_lnds_warp], pre_path=path_experiment)
if not os.path.isfile(path_csv):
# if the path is false, put there the initial from dataset
path_csv = update_path(row[ImRegBenchmark.COL_POINTS_MOVE], pre_path=path_dataset)
df_experiments.loc[idx, ImRegBenchmark.COL_POINTS_MOVE_WARP] = path_csv
count += 1
logging.info('Missing warped landmarks: %i', count)
return df_experiments
def swap_inverse_experiment(table, allow_inverse):
""" optional swap of registration results from using warped moving to warped reference
:param DF table: experiment table
:param bool allow_inverse: allw swap from using warped moving to warped reference
:return DF: updated experiment table
"""
if not allow_inverse:
return table
if ImRegBenchmark.COL_POINTS_MOVE_WARP in table.columns:
filled = table[ImRegBenchmark.COL_POINTS_MOVE_WARP].dropna()
if len(filled) > 0:
# everything seems to be fine...
return table
logging.warning('Missing target column "%s"', ImRegBenchmark.COL_POINTS_MOVE_WARP)
if ImRegBenchmark.COL_POINTS_REF_WARP not in table.columns:
raise ValueError('Missing target column "%s" to swap to' % ImRegBenchmark.COL_POINTS_REF_WARP)
logging.info('Swapping columns of Moving and Reference landmarks for both - source and warped.')
col_ref = table[ImRegBenchmark.COL_POINTS_REF].values.tolist()
col_move = table[ImRegBenchmark.COL_POINTS_MOVE].values.tolist()
table[ImRegBenchmark.COL_POINTS_REF] = col_move
table[ImRegBenchmark.COL_POINTS_MOVE] = col_ref
table[ImRegBenchmark.COL_POINTS_MOVE_WARP] = table[ImRegBenchmark.COL_POINTS_REF_WARP]
return table
def main(
path_experiment,
path_table,
path_dataset,
path_output,
path_reference=None,
path_comp_bm=None,
min_landmarks=1.,
details=True,
allow_inverse=False,
):
""" main entry point
:param str path_experiment: path to experiment folder
:param str path_table: path to assignment file (requested registration pairs)
:param str path_dataset: path to provided landmarks
:param str path_output: path to generated results
:param str|None path_reference: path to the complete landmark collection,
if None use dataset folder
:param str|None path_comp_bm: path to reference comp. benchmark
:param int nb_workers: number of parallel processes
:param float min_landmarks: required number of submitted landmarks in range (0, 1),
match values in COL_PAIRED_LANDMARKS
:param bool details: exporting case details
:param bool allow_inverse: allow evaluate also inverse transformation,
warped landmarks from ref to move image
"""
path_results = os.path.join(path_experiment, ImRegBenchmark.NAME_CSV_REGISTRATION_PAIRS)
if not os.path.isfile(path_results):
raise AttributeError('Missing experiments results: %s' % path_results)
path_reference = path_dataset if not path_reference else path_reference
# drop time column from Cover which should be empty
df_overview = pd.read_csv(path_table).drop([ImRegBenchmark.COL_TIME], axis=1, errors='ignore')
df_overview = _df_drop_unnamed(df_overview)
# drop Warp* column from Cover which should be empty
df_overview = df_overview.drop(
[col for col in df_overview.columns if 'warped' in col.lower()],
axis=1,
errors='ignore',
)
df_results = pd.read_csv(path_results)
df_results = _df_drop_unnamed(df_results)
# df_results.drop(filter(lambda c: 'Unnamed' in c, df_results.columns), axis=1, inplace=True)
cols_ = list(ImRegBenchmark.COVER_COLUMNS_WRAP) + [ImRegBenchmark.COL_TIME]
df_results = df_results[[col for col in cols_ if col in df_results.columns]]
df_experiments = pd.merge(df_overview, df_results, how='left', on=ImRegBenchmark.COVER_COLUMNS)
df_experiments = swap_inverse_experiment(df_experiments, allow_inverse)
# df_experiments.drop([ImRegBenchmark.COL_IMAGE_REF_WARP, ImRegBenchmark.COL_POINTS_REF_WARP],
# axis=1, errors='ignore', inplace=True)
df_experiments.drop(filter(lambda c: 'Unnamed' in c, df_results.columns), axis=1, inplace=True)
df_experiments = replicate_missing_warped_landmarks(df_experiments, path_dataset, path_experiment)
normalize_exec_time(df_experiments, path_experiment, path_comp_bm)
# logging.info('Filter used landmarks.')
# path_filtered = os.path.join(path_output, FOLDER_FILTER_DATASET)
# create_folder(path_filtered, ok_existing=True)
# _filter_lnds = partial(filter_export_landmarks, path_output=path_filtered,
# path_dataset=path_dataset, path_reference=path_reference)
# for idx, ratio in iterate_mproc_map(_filter_lnds, df_experiments.iterrows(),
# desc='Filtering', nb_workers=nb_workers):
# df_experiments.loc[idx, COL_PAIRED_LANDMARKS] = np.round(ratio, 2)
logging.info('Compute landmarks statistic.')
_compute_lnds_stat = partial(
ImRegBenchmark.compute_registration_statistic,
df_experiments=df_experiments,
path_dataset=path_dataset,
path_experiment=path_experiment,
path_reference=path_reference,
)
# NOTE: this has to run in SINGLE thread so there is SINGLE table instance
list(iterate_mproc_map(_compute_lnds_stat, df_experiments.iterrows(), desc='Statistic', nb_workers=1))
name_results, _ = os.path.splitext(os.path.basename(path_results))
path_results = os.path.join(path_output, name_results + '_NEW.csv')
logging.debug('exporting CSV results: %s', path_results)
df_experiments.to_csv(path_results)
path_json = export_summary_json(df_experiments, path_experiment, path_output, min_landmarks, details)
return path_json
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
arg_params = parse_arg_params(create_parser())
logging.info('running...')
main(**arg_params)
logging.info('DONE')