--- a/README.md +++ b/README.md @@ -11,7 +11,8 @@ <p>volunteer02.avi - volunteer 09.avi: 8 bits grayscale codec<br> volunteer01: sequence of images grabbed from the ultraosund video output</p> <pre class="uc-code-block"><code> Spatial <span class="hljs-built_in">resolution</span> Temporal <span class="hljs-built_in">resolution</span> Center frequency -</code><div class="uc-code-block-copy-button-wrapper"><button class="uc-code-block-copy-button google-symbols" aria-label="Copy code">content_copy</button></div></pre> +</code> + <h2> [mm/pixel] [fps] [MHz]</h2> <h2>volunteer01 0.71 25 2.22</h2> <h2>volunteer02 0.40 16 2.00</h2> @@ -21,7 +22,8 @@ <h2>volunteer06 0.37 17 1.82</h2> <h2>volunteer07 0.28 14 2.22</h2> <h2>volunteer08 0.36 17 1.82</h2> -<p>volunteer09 0.40 16 1.82</p> +<h2>volunteer09 0.40 16 1.82</h2> + <p>Citation<br> L. Petrusca, P. Cattin, V. De Luca, F. Preiswerk, Z. Celicanin, V. Auboiroux, M. Viallon, P. Arnold, F. Santini, S. Terraz, K. Scheffler, C. D. Becker, R. Salomir, "Hybrid Ultrasound/Magnetic Resonance Simultaneous Acquisition and Image Fusion for Motion Monitoring in the Upper Abdomen", Investigative Radiology, Vol. 48, No. 5, pp. 333-340, 2013.</p> <p>V. De Luca, M. Tschannen, G. Székely, C. Tanner, "A Learning-based Approach for Fast and Robust Vessel Tracking in Long Ultrasound Sequences", Medical Image Computing and Computer-Assisted Intervention, Springer. volume of LNCS 8149, pp. 518-525, 2013.</p></div></div></div> \ No newline at end of file