Diff of /README.md [000000] .. [863686]

Switch to unified view

a b/README.md
1
<div class="sc-cmRAlD dkqmWS"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-jgvlka jFuPjz"><div class="sc-gzqKSP ktvwwo"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-bMmLMY ZURWJ"><p><strong>Comprehensive Collection:</strong> This dataset comprises a diverse collection of images representing various skin diseases.</p>
2
<p><strong>Categorization:</strong> The images are meticulously categorized into 22 distinct classes, each corresponding to a specific skin condition.</p>
3
<p><strong>Diverse Skin Conditions:</strong> These classes include:</p>
4
<ul>
5
<li>Acne</li>
6
<li>Actinic Keratosis</li>
7
<li>Benign Tumors</li>
8
<li>Bullous</li>
9
<li>Candidiasis</li>
10
<li>Drug Eruption</li>
11
<li>Eczema</li>
12
<li>Infestations/Bites</li>
13
<li>Lichen</li>
14
<li>Lupus</li>
15
<li>Moles</li>
16
<li>Psoriasis</li>
17
<li>Rosacea</li>
18
<li>Seborrheic Keratoses</li>
19
<li>Skin Cancer</li>
20
<li>Sun/Sunlight Damage</li>
21
<li>Tinea</li>
22
<li>Unknown/Normal</li>
23
<li>Vascular Tumors</li>
24
<li>Vasculitis</li>
25
<li>Vitiligo</li>
26
<li>Warts</li>
27
</ul>
28
<p><strong>Intended Use:</strong> The dataset is intended for use in image classification tasks, particularly in the fields of dermatology and medical diagnostics.</p>
29
<p><strong>Research and Development:</strong> It provides a valuable resource for researchers, developers, and practitioners aiming to develop and evaluate machine learning algorithms for automated skin disease diagnosis and classification.</p>
30
<p><strong>Medical Advancements:</strong> By leveraging this dataset, advancements in the accurate and efficient identification of skin diseases can be achieved, contributing to improved patient outcomes.</p>
31
<p><strong>Educational Resource:</strong>  The dataset can also serve as an educational tool for training healthcare professionals and students in recognizing and diagnosing various skin conditions through image analysis.</p></div></div></div>