|
a |
|
b/README.md |
|
|
1 |
<div class="sc-cmRAlD dkqmWS"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-jgvlka jFuPjz"><div class="sc-gzqKSP ktvwwo"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-bMmLMY ZURWJ"><p><strong>Comprehensive Collection:</strong> This dataset comprises a diverse collection of images representing various skin diseases.</p> |
|
|
2 |
<p><strong>Categorization:</strong> The images are meticulously categorized into 22 distinct classes, each corresponding to a specific skin condition.</p> |
|
|
3 |
<p><strong>Diverse Skin Conditions:</strong> These classes include:</p> |
|
|
4 |
<ul> |
|
|
5 |
<li>Acne</li> |
|
|
6 |
<li>Actinic Keratosis</li> |
|
|
7 |
<li>Benign Tumors</li> |
|
|
8 |
<li>Bullous</li> |
|
|
9 |
<li>Candidiasis</li> |
|
|
10 |
<li>Drug Eruption</li> |
|
|
11 |
<li>Eczema</li> |
|
|
12 |
<li>Infestations/Bites</li> |
|
|
13 |
<li>Lichen</li> |
|
|
14 |
<li>Lupus</li> |
|
|
15 |
<li>Moles</li> |
|
|
16 |
<li>Psoriasis</li> |
|
|
17 |
<li>Rosacea</li> |
|
|
18 |
<li>Seborrheic Keratoses</li> |
|
|
19 |
<li>Skin Cancer</li> |
|
|
20 |
<li>Sun/Sunlight Damage</li> |
|
|
21 |
<li>Tinea</li> |
|
|
22 |
<li>Unknown/Normal</li> |
|
|
23 |
<li>Vascular Tumors</li> |
|
|
24 |
<li>Vasculitis</li> |
|
|
25 |
<li>Vitiligo</li> |
|
|
26 |
<li>Warts</li> |
|
|
27 |
</ul> |
|
|
28 |
<p><strong>Intended Use:</strong> The dataset is intended for use in image classification tasks, particularly in the fields of dermatology and medical diagnostics.</p> |
|
|
29 |
<p><strong>Research and Development:</strong> It provides a valuable resource for researchers, developers, and practitioners aiming to develop and evaluate machine learning algorithms for automated skin disease diagnosis and classification.</p> |
|
|
30 |
<p><strong>Medical Advancements:</strong> By leveraging this dataset, advancements in the accurate and efficient identification of skin diseases can be achieved, contributing to improved patient outcomes.</p> |
|
|
31 |
<p><strong>Educational Resource:</strong> The dataset can also serve as an educational tool for training healthcare professionals and students in recognizing and diagnosing various skin conditions through image analysis.</p></div></div></div> |