[fd96a8]: / README.md

Download this file

113 lines (96 with data), 12.2 kB

Abstract

This dataset was collected as part of a prospective observational study to evaluate the effects of type 2 diabetes mellitus (DM) on cerebral vasoregulation, perfusion and functional outcomes, measured by blood flow responses to hypocapnia and hypercapnia, Valsalva maneuver, head-up tilt, and sit-to-stand test...

Background

Diabetes mellitus (DM) alters the permeability of the blood-brain barrier, thus affecting regional metabolism and microcirculatory regulation...

Methods

The study was approved by Institutional Review Board of Beth Israel Deaconess Medical Center (BIDMC #2008P000286)...

Recruitment

A total of 120 participants were recruited for the study based on inclusion and exclusion criteria...

Screening (First Visit)

Subjects were asked to sign informed consent form...

Visit 2 (Baseline)

Day 1: Subjects were admitted to CRC (Clinical Research Center)...

Day 2: Blood was collected for fasting glucose, A1c (hemoglobin A1c), C-peptide, lipids, hematocrit, WBC (white blood cells count)...

Follow-up visits (6, 12, 18 months)

Subjects visited biannually for a follow-up visits that included measurements of fasting glucose, A1C, renal panels, vital signs, anthropometric and body fat measures...

Visit 8 (Two-year follow-up)

Identical to Visit 2 (Baseline).

Data Description

The GE-79_Protocol.pdf in the main directory contains the description of the experimental protocol.

1. Files in Data_Description directory:

  • GE-79_Files_and Channels.csv - signals and calibration list.
  • GE-79_Files_per_subject.csv - files available for each subject.
  • GE-79_Summary_Table-Demographics-MRI-Part1.csv - demographics and MRI data.
  • GE-79_Summary_Table-MRI-Part2.csv - MRI data part 2.
  • GE-79_Summary_Table-MRI-Part3.csv - MRI data part 3.
  • GE-79_Summary_Table-MRI-Part4.csv - MRI data part 4.
  • GE-79_Summary_Table-MRI-Part5-History.csv - medical and medication history.
  • GE-79_Summary_Table-Labs-BP-Ophthalmogic-Walk.csv - labs, blood pressure, eye testing, walking test.
  • GE-79_Summary_Table-Cognitive-Testing.csv - cognitive testing results.
  • GE-79_Data_Dictionary.csv - variables dictionary with examples.

2. Files in Data directory:

  • ECG files from 24 hour monitoring.
  • Labview - cardiovascular, respiratory, and TCD recordings during maneuvers.

Usage Notes

Formats in which the files are provided: ECG files converted to WFDB format, Labview files converted to WFDB format.

Ethics

The study was approved by Institutional Review Board of Beth Israel Deaconess Medical Center (BIDMC #2008P000286)...

Acknowledgements

The work was supported by the National Institutes of Health (NIH-NIA1R01-AG0287601A2, NIH-NIDDK 5R21 DK084463), American Diabetes Association (Clinical 1-03-CR-23 and 1-06-CR-25)...

Conflicts of Interest

Authors report no conflict of interest.

References

Brownlee,M. The pathobiology of diabetic complications. Diabetes 54, 1615-1625 (2006).
Manschot,S.M. et al. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55, 1106-1113 (2006).
Aiello,L.M., Cavallerano,J.D., Cavallerano,A.A., & Bursell,S.E. The Joslin Vision Network (JVN) Innovative Telemedicine Care for Diabetes. Ophthalmol. Clin. North. Am. 13, 213-224 (2000).
Bursell,S.E. et al. Stereo nonmydriatic digital-video color retinal imaging compared with Early Treatment Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for determining level of diabetic retinopathy. Ophthalmology 108, 572-585 (2001).
Cavallerano,A.A. et al. Use of Joslin Vision Network digital-video nonmydriatic retinal imaging to assess diabetic retinopathy in a clinical program. Retina 23, 215-223 (2003).
Cavallerano,A.A. et al. A telemedicine program for diabetic retinopathy in a Veterans Affairs Medical Center--the Joslin Vision Network Eye Health Care Model. Am. J. Ophtalmol 139, 597-604 (2005).
Fong,D.S., Warram,J.H., Aiello,L.M., Rand,L.I., & Krolewski,A.S. Cardiovascular autonomic neuropathy and proliferative diabetic retinopathy. Am. J. Ophtalmol 120, 317-321 (1995).
Wilson,C., Horton,M., Cavallerano,J.D., & Aiello,L.M. Addition of primary care-based retinal imaging technology to an existing eye care professional referral program increased the rate of surveillance and treatment of diabetic retinopathy. Diabetes Care 28, 318-322 (2005).
Bastyr,E.J.3., Price,K.L., Bril,V., & the MMBQ Study group Development and validity testing of the neuropathy total symptom score-6: questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin. Ther. 27, 1278-1294 (2005).
Bril,V. & Perkins,B.A. Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care 25, 2048-2052 (2002).
Kamimura,M.A. et al. Comparison of skinfold thicknesses and bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body fat in patients on long-term haemodialysis therapy. Nephrol. Dial. Transplant. 18, 101-105 (2003).
Cohen,J. Statistical power analysis for the behavioral sciences.(Lawrence Erlbaum Associates, New Jersey, 1988).
Launer,L.J. Diabetes and brain aging: epidemiologic evidence. Curr. Diab. Rep. 5, 59-63 (2006).
Horani,M.H. & Mooradian,A.D. Effect of diabetes on the blood brain barrier. Curr. Pharm. Des. 9, 833-840 (2003).
Korf,E.S., White,L.R., Scheltens,P., & Launer,L.J. Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 29, 2268-2274 (2006).
Schmidt,R. et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes 53, 687-692 (2004).
Xu,W.L., Qiu,C.X., Wahlin,A., Winblad,B., & Fratiglioni,L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63, 1181-1186 (2004).
Task Force on Community Preventive Services Strategies for reducing morbidity and mortality from diabetes through health-care system interventions and diabetes self-management education in community settings. A report on recommendations of the task force on community preventive services. National Center for Chronic Disease Prevention and Health Promotion, MMWRI 50, (2001).
Makimattila,S. et al. Brain metabolic alterations in patients with type 1 diabetes-hyperglycemia-induced injury. J Cereb Blood Flow Metab 24, 1393-1399 (2004).
Keymeulen,B. et al. Regional cerebral hypoperfusion in long-term type 1 (insulin-dependent) diabetic patients: relation to hypoglycaemic event. Nucl. Med. Commun. 16, 10-6 (1995).
Kannel,W.B., Kannel,C., Paffenbarger,R.S.J., & Cupples,L.A. Heart rate and cardiovascular mortality: The Framingham study. Am. Heart J. 113, 1494 (1987).
Gunning-Dixon,F.M. & Raz,N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14, 224-232 (2000).
Vazquez,L.A. et al. Decreased plasma endothelin-1 levels in asymptomatic type I diabetic patients with regional cerebral hypoperfusion assessed by Spect. J. Diabetes Complications 13, 325-331 (1999).
Jimenez-Bonilla,J.F. et al. Assessment of cerebral blood flow in diabetic patients with no clinical history of neurological disease. Nucl Med Commun 17, 790-794 (1996).
Kadoi,Y., Saito,S., Goto,F., & Fujita,N. The effect of diabetes on the interrelationship between jugular venous oxygen saturation responsiveness to phenylephrine infusion and cerebrovascular carbon dioxide reactivity. Anesth Analg 99, 325-331 (2004).
Kadoi,Y. et al. Diabetic patients have an impaired cerebral vasodilatory response to hypercapnia under propofol anesthesia. Stroke 34, 2399-2403 (2003).
Wakisaka,M. et al. Reduced regional cerebral blood flow in aged noninsulin-dependent diabetic patients with no history of cerebrovascular disease: evaluation by N-isopropyl-123I-p-iodoamphetamine with single-photon emission computed tomography. J. Diabetes Complications 4, 170-174 (1990).
MacLeod,K.M. et al. The effects of acute hypoglycemia on relative cerebral blood flow distribution in patients with type I (insulin-dependent) diabetes and impaired hypoglycemia awareness. Metabolism 45, 974-980 (1996).
Cranston,I. et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J Cereb Blood Flow Metab 18, 130-140 (1998).
Vermeer,S.E. et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: The Rotterdam scan study. Stroke 34, 1126-1129 (2003).
Schmidt,R. et al. White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology 63, 139-144 (2004).
Musen,G. et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55, 326-333 (2006).
Ikram,M.K. et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain182-188 (2006).
Vermeer,S.E., Prins,N.D., den Heijer,T., Koudstaal,P.J., & Breteler,M.M. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 27, 1215-1222 (2003).
deGroot,J.C. et al. Cerebral white matter lesions and subjective cognitive dysfunction: the Rotterdam Scan Study. Neurology 56, 1539-1541 (2001).
Meyer,J.S., Rogers,R.L., Judd,B.W., Mortel,K.F., & Sims,P. Cognition and cerebral blood flow fluctuate together in multi-infarct dementia. Stroke 19, 163-169 (2003).
DeCarli,C. & et al. The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 45, 2077-2084 (1995).
Looi,J.C. & Sachdev,P.S. Differentiation of vascular dementia from AD on neuropsychological tests. Neurology 53, 670-678 (1999).
Laughton,C.A. et al. Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 18, 101-108 (2003).
Norris,J.A., Marsh,P.M., Smith,I.J., Kohut,R.I., & Miller,M.E. Ability of static and statistical mechanics posturographic measures to distinguish between age and fall risk. Journal of Biomechanics 38, 1263-1272 (2005).
Nardone,A., Grasso,M., & Schieppati,M. Balance control in peripheral neuropathy: are patients equally unstable under static and dynamic conditions? Gait Posture 23, 364-373 (2006).
Tell,G.S., Lefkowitz,D.S., Diehr,P., & Elster,A.D. Relationship between balance and abnormalities in cerebral magnetic resonance imaging in older adults. Arch. Neurol. 55, 73-9 (1998).
Whitman,G.T. & Tang,T. A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology 57, 990-994 (2001).
Baloh,R.W., Ying,S.H., & Jacobson,K.M. A longitudinal study of gait and balance dysfunction in normal older people. Arch. Neurol. 60, 835-839 (2003).
Mehagnoul-Schipper,D.J., Colier,W.N., & Jansen,R.W. Reproducibility of orthostatic changes in cerebral oxygenation in healthy subjects aged 70 years and older. Clin. Physiol. 21, 77-84 (2001).
Novak,V., Novak,P., Spies,J.M., & Low,P.A. Autoregulation of cerebral blood flow in orthostatic hypotension. Stroke 29, 104-111 (1998).
Novak,V. et al. Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes. Diabetes Care 29, 1529-1534 (2006).
Last,D. et al. Global and regional effects of type 2 diabetes mellitus on brain tissue volumes and cerebral vasoreactivity . Diabetes Care 30, 1193-1199 (2007).
Knopman,D.S., Mosley,T.H., Catellier,D.J., & Sharrett,A.R. Cardiovascular risk factors and cerebral atrophy in a middle-aged cohort. Neurology 65, 876-881 (2005).
Schmidt,M.I. et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 15, 1649-1652 (1999).