a/README.md b/README.md
...
...
8
        <strong>When using this resource, please cite: </strong>
8
        <strong>When using this resource, please cite: </strong>
9
       
9
       
10
        <br><span>Novak, V., &amp; Mendez, L. (2020). Cerebral Vasoregulation in Diabetes (version 1.0.0). <i>PhysioNet</i>. <a href="https://doi.org/10.13026/m40k-4758">https://doi.org/10.13026/m40k-4758</a>.</span>
10
        <br><span>Novak, V., &amp; Mendez, L. (2020). Cerebral Vasoregulation in Diabetes (version 1.0.0). <i>PhysioNet</i>. <a href="https://doi.org/10.13026/m40k-4758">https://doi.org/10.13026/m40k-4758</a>.</span>
11
      </p>
11
      </p>
12
12
13
     
13
      
14
        
15
<h2 id="abstract">Abstract</h2>
14
<h2 id="abstract">Abstract</h2>
16
<p><span><span><span>This observational study evaluated the effects of type 2 diabetes on cerebral vasoregulation and functional outcomes, measured by blood flow responses to hypocapnia and hypercapnia, Valsalva maneuver, head-up tilt, and sit-to-stand test. This dataset contains 37 diabetic participants and 49 controls (aged &nbsp;55 to 75 years) with continuous measurements of cerebral blood flow using transcranial Doppler and MRI, heart rate, blood pressure, and respiratory parameters, balance, walking, laboratory and retinopathy measures. </span></span></span></p>
15
<p><span><span><span>This observational study evaluated the effects of type 2 diabetes on cerebral vasoregulation and functional outcomes, measured by blood flow responses to hypocapnia and hypercapnia, Valsalva maneuver, head-up tilt, and sit-to-stand test. This dataset contains 37 diabetic participants and 49 controls (aged &nbsp;55 to 75 years) with continuous measurements of cerebral blood flow using transcranial Doppler and MRI, heart rate, blood pressure, and respiratory parameters, balance, walking, laboratory and retinopathy measures. </span></span></span></p>
17
<hr>
16
<hr>
18
17
19
<h2 id="background">Background</h2>
18
<h2 id="background">Background</h2>