--- a +++ b/README.md @@ -0,0 +1,140 @@ +# Brain Hemorrhage Extended (BHX): Bounding Box Extrapolation from Thick to Thin Slice CT Images + +**Creators**: +Eduardo Pontes Reis, Felipe Nascimento, Mateus Aranha, Fernando Mainetti Secol, Birajara Machado, Marcelo Felix, Anouk Stein, Edson Amaro + +**Published**: July 29, 2020 +**Version**: 1.1 + +--- + +## π Citation + +Reis, E. P., Nascimento, F., Aranha, M., Mainetti Secol, F., Machado, B., Felix, M., Stein, A., & Amaro, E. (2020). *Brain Hemorrhage Extended (BHX): Bounding box extrapolation from thick to thin slice CT images* (version 1.1). PhysioNet. https://doi.org/10.13026/9cft-hg92 + +### PhysioNet Standard Citation: + +Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). *PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals*. Circulation [Online]. 101 (23), pp. e215βe220. + +--- + +## π§ Abstract + +BHX is a publicly available dataset with bounding box annotations for five types of acute hemorrhage as an extension of the [qure.ai CQ500 dataset](http://headctstudy.qure.ai/dataset). The dataset is intended to aid in developing machine learning solutions for hemorrhage detection and localization. + +--- + +## π Key Points + +- **39,668** bounding boxes in **23,409** images annotated for hemorrhage. +- Built from the ~170k image **CQ500 dataset**. +- Bounding boxes extrapolated from sparse thick-slice labeling to thin-slice images. +- Supports machine learning applications for hemorrhage localization and diagnosis. + +--- + +## 𧬠Background + +- Intracranial hemorrhage is a serious condition with a **40% one-month mortality rate**. +- Head CT is the primary imaging modality. +- Manual bounding box annotation is time-consuming; hence, extrapolation methods are used. +- No existing public dataset includes **localization data** with bounding boxes until BHX. + +--- + +## π§ͺ Methods + +- Based on the **CQ500 dataset** (491 scans, 205 hemorrhage-positive). +- Labeled by 3 neuroradiologists with varying experience. +- Matching between thick and thin series was done via DICOM tag: `Image Position (patient)`. +- Six types of hemorrhage labeled: + - **Intraparenchymal** + - **Subarachnoid** + - **Intraventricular** + - **Epidural** + - **Acute Subdural** + - **Chronic Subdural** + +--- + +## ποΈ Data Description + +### Annotation Stats: + +- **6,283** manually labeled bounding boxes in **3,558** images. +- **39,668** extrapolated bounding boxes in **23,409** images. + +### Dataset Versions: + +1. `1_Initial_Manual_Labeling.csv`: Hand-drawn annotations on thick slices. +2. `2_Extrapolation_to_All_Series.csv`: Extrapolated to all corresponding series. +3. `3_Extrapolation_to_Selected_Series.csv`: Extrapolated only for selected soft-tissue thin-slice series. + +### Columns: + +- `SOPInstanceUID`: Unique DICOM image ID +- `SeriesInstanceUID`: DICOM series ID +- `StudyInstanceUID`: DICOM study ID +- `data`: Bounding box coordinates (X, Y, width, height) +- `labelName`: Hemorrhage type +- `labelType`: Source of image (thick-slices, thin-slices, or other) + +--- + +## π DICOM UID Mapping + +- Annotations are linked via DICOM tag: `0008,0018 β SOP Instance UID`. + +--- + +## π Original Images + +- Hosted at: [http://headctstudy.qure.ai/dataset](http://headctstudy.qure.ai/dataset) + +--- + +## π Usage Notes + +- Unique resource for **bounding-box annotated hemorrhage images**. +- Enables **benchmarking** and **development** of deep learning algorithms. +- Includes extrapolated labels, some of which may have minor inaccuracies. +- Future work should consider **interpolating bounding boxes** between slices for smoother transitions. + +--- + +## πΌοΈ Visual Inspection + +- Explore annotated images at: + [https://public.md.ai/annotator/project/Y2qr6vqv/workspace](https://public.md.ai/annotator/project/Y2qr6vqv/workspace) + +--- + +## π Acknowledgements + +- **qure.ai** β for publishing the CQ500 dataset. +- **MD.ai** β for providing the annotation platform. + +--- + +## β οΈ Conflicts of Interest + +- A.S. is employed by MD.ai, which provided the annotation platform. + +--- + +## π References + +1. van Asch C, et al. *The Lancet Neurology*, 2010. +2. Heit J, et al. *Journal of Stroke*, 2017. +3. Chang P, et al. *American Journal of Neuroradiology*, 2018. +4. Goldstein J, Gilson A. *Current Treatment Options in Neurology*, 2011. +5. Prevedello L, et al. *Radiology*, 2017. +6. Chilamkurthy S, et al. *The Lancet*, 2018. +7. Kuo W, et al. *PNAS*, 2019. +8. RSNA ICH Detection. [Kaggle](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection) +9. Mirza S, Gokhale S. *IntechOpen*, 2017. +10. Osborn A, et al. *Osbornβs Brain*, Elsevier, 2018. +11. Weiss K, et al. *AJR*, 2011. +12. DICOM Standard. [dicomstandard.org](https://www.dicomstandard.org) + +---