|
a |
|
b/README.md |
|
|
1 |
# Brain Hemorrhage Extended (BHX): Bounding Box Extrapolation from Thick to Thin Slice CT Images |
|
|
2 |
|
|
|
3 |
**Creators**: |
|
|
4 |
Eduardo Pontes Reis, Felipe Nascimento, Mateus Aranha, Fernando Mainetti Secol, Birajara Machado, Marcelo Felix, Anouk Stein, Edson Amaro |
|
|
5 |
|
|
|
6 |
**Published**: July 29, 2020 |
|
|
7 |
**Version**: 1.1 |
|
|
8 |
|
|
|
9 |
--- |
|
|
10 |
|
|
|
11 |
## π Citation |
|
|
12 |
|
|
|
13 |
Reis, E. P., Nascimento, F., Aranha, M., Mainetti Secol, F., Machado, B., Felix, M., Stein, A., & Amaro, E. (2020). *Brain Hemorrhage Extended (BHX): Bounding box extrapolation from thick to thin slice CT images* (version 1.1). PhysioNet. https://doi.org/10.13026/9cft-hg92 |
|
|
14 |
|
|
|
15 |
### PhysioNet Standard Citation: |
|
|
16 |
|
|
|
17 |
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). *PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals*. Circulation [Online]. 101 (23), pp. e215βe220. |
|
|
18 |
|
|
|
19 |
--- |
|
|
20 |
|
|
|
21 |
## π§ Abstract |
|
|
22 |
|
|
|
23 |
BHX is a publicly available dataset with bounding box annotations for five types of acute hemorrhage as an extension of the [qure.ai CQ500 dataset](http://headctstudy.qure.ai/dataset). The dataset is intended to aid in developing machine learning solutions for hemorrhage detection and localization. |
|
|
24 |
|
|
|
25 |
--- |
|
|
26 |
|
|
|
27 |
## π Key Points |
|
|
28 |
|
|
|
29 |
- **39,668** bounding boxes in **23,409** images annotated for hemorrhage. |
|
|
30 |
- Built from the ~170k image **CQ500 dataset**. |
|
|
31 |
- Bounding boxes extrapolated from sparse thick-slice labeling to thin-slice images. |
|
|
32 |
- Supports machine learning applications for hemorrhage localization and diagnosis. |
|
|
33 |
|
|
|
34 |
--- |
|
|
35 |
|
|
|
36 |
## 𧬠Background |
|
|
37 |
|
|
|
38 |
- Intracranial hemorrhage is a serious condition with a **40% one-month mortality rate**. |
|
|
39 |
- Head CT is the primary imaging modality. |
|
|
40 |
- Manual bounding box annotation is time-consuming; hence, extrapolation methods are used. |
|
|
41 |
- No existing public dataset includes **localization data** with bounding boxes until BHX. |
|
|
42 |
|
|
|
43 |
--- |
|
|
44 |
|
|
|
45 |
## π§ͺ Methods |
|
|
46 |
|
|
|
47 |
- Based on the **CQ500 dataset** (491 scans, 205 hemorrhage-positive). |
|
|
48 |
- Labeled by 3 neuroradiologists with varying experience. |
|
|
49 |
- Matching between thick and thin series was done via DICOM tag: `Image Position (patient)`. |
|
|
50 |
- Six types of hemorrhage labeled: |
|
|
51 |
- **Intraparenchymal** |
|
|
52 |
- **Subarachnoid** |
|
|
53 |
- **Intraventricular** |
|
|
54 |
- **Epidural** |
|
|
55 |
- **Acute Subdural** |
|
|
56 |
- **Chronic Subdural** |
|
|
57 |
|
|
|
58 |
--- |
|
|
59 |
|
|
|
60 |
## ποΈ Data Description |
|
|
61 |
|
|
|
62 |
### Annotation Stats: |
|
|
63 |
|
|
|
64 |
- **6,283** manually labeled bounding boxes in **3,558** images. |
|
|
65 |
- **39,668** extrapolated bounding boxes in **23,409** images. |
|
|
66 |
|
|
|
67 |
### Dataset Versions: |
|
|
68 |
|
|
|
69 |
1. `1_Initial_Manual_Labeling.csv`: Hand-drawn annotations on thick slices. |
|
|
70 |
2. `2_Extrapolation_to_All_Series.csv`: Extrapolated to all corresponding series. |
|
|
71 |
3. `3_Extrapolation_to_Selected_Series.csv`: Extrapolated only for selected soft-tissue thin-slice series. |
|
|
72 |
|
|
|
73 |
### Columns: |
|
|
74 |
|
|
|
75 |
- `SOPInstanceUID`: Unique DICOM image ID |
|
|
76 |
- `SeriesInstanceUID`: DICOM series ID |
|
|
77 |
- `StudyInstanceUID`: DICOM study ID |
|
|
78 |
- `data`: Bounding box coordinates (X, Y, width, height) |
|
|
79 |
- `labelName`: Hemorrhage type |
|
|
80 |
- `labelType`: Source of image (thick-slices, thin-slices, or other) |
|
|
81 |
|
|
|
82 |
--- |
|
|
83 |
|
|
|
84 |
## π DICOM UID Mapping |
|
|
85 |
|
|
|
86 |
- Annotations are linked via DICOM tag: `0008,0018 β SOP Instance UID`. |
|
|
87 |
|
|
|
88 |
--- |
|
|
89 |
|
|
|
90 |
## π Original Images |
|
|
91 |
|
|
|
92 |
- Hosted at: [http://headctstudy.qure.ai/dataset](http://headctstudy.qure.ai/dataset) |
|
|
93 |
|
|
|
94 |
--- |
|
|
95 |
|
|
|
96 |
## π Usage Notes |
|
|
97 |
|
|
|
98 |
- Unique resource for **bounding-box annotated hemorrhage images**. |
|
|
99 |
- Enables **benchmarking** and **development** of deep learning algorithms. |
|
|
100 |
- Includes extrapolated labels, some of which may have minor inaccuracies. |
|
|
101 |
- Future work should consider **interpolating bounding boxes** between slices for smoother transitions. |
|
|
102 |
|
|
|
103 |
--- |
|
|
104 |
|
|
|
105 |
## πΌοΈ Visual Inspection |
|
|
106 |
|
|
|
107 |
- Explore annotated images at: |
|
|
108 |
[https://public.md.ai/annotator/project/Y2qr6vqv/workspace](https://public.md.ai/annotator/project/Y2qr6vqv/workspace) |
|
|
109 |
|
|
|
110 |
--- |
|
|
111 |
|
|
|
112 |
## π Acknowledgements |
|
|
113 |
|
|
|
114 |
- **qure.ai** β for publishing the CQ500 dataset. |
|
|
115 |
- **MD.ai** β for providing the annotation platform. |
|
|
116 |
|
|
|
117 |
--- |
|
|
118 |
|
|
|
119 |
## β οΈ Conflicts of Interest |
|
|
120 |
|
|
|
121 |
- A.S. is employed by MD.ai, which provided the annotation platform. |
|
|
122 |
|
|
|
123 |
--- |
|
|
124 |
|
|
|
125 |
## π References |
|
|
126 |
|
|
|
127 |
1. van Asch C, et al. *The Lancet Neurology*, 2010. |
|
|
128 |
2. Heit J, et al. *Journal of Stroke*, 2017. |
|
|
129 |
3. Chang P, et al. *American Journal of Neuroradiology*, 2018. |
|
|
130 |
4. Goldstein J, Gilson A. *Current Treatment Options in Neurology*, 2011. |
|
|
131 |
5. Prevedello L, et al. *Radiology*, 2017. |
|
|
132 |
6. Chilamkurthy S, et al. *The Lancet*, 2018. |
|
|
133 |
7. Kuo W, et al. *PNAS*, 2019. |
|
|
134 |
8. RSNA ICH Detection. [Kaggle](https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection) |
|
|
135 |
9. Mirza S, Gokhale S. *IntechOpen*, 2017. |
|
|
136 |
10. Osborn A, et al. *Osbornβs Brain*, Elsevier, 2018. |
|
|
137 |
11. Weiss K, et al. *AJR*, 2011. |
|
|
138 |
12. DICOM Standard. [dicomstandard.org](https://www.dicomstandard.org) |
|
|
139 |
|
|
|
140 |
--- |