Diff of /README.md [000000] .. [0e0f8e]

Switch to unified view

a b/README.md
1
<div class="sc-cmRAlD dkqmWS"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-jgvlka jFuPjz"><div class="sc-gzqKSP tNtjD"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-bMmLMY ZURWJ"><h1>ECG IMAGES</h1>
2
<p>This dataset is composed of Electrocardiogram (ECG) images obtained from the database <a rel="noreferrer nofollow" aria-label="MIT-BIH Arrhythmia (opens in a new tab)" target="_blank" href="https://physionet.org/content/mitdb/1.0.0/">MIT-BIH Arrhythmia</a>. For that, the ECG signals were pre-processed, generating 109.445 images with a resolution of 256x256. In sequence, five cardiac arrhythmia superclasses recommended by <strong>AAMI</strong> were selected for work.</p>
3
<h3>ECG images dataset:</h3>
4
<p>Number of Samples: 109445<br>
5
Number of Categories: 5<br>
6
Image Resolution: 256x256<br>
7
Data Source: Physionet's MIT-BIH Arrhythmia Dataset<br>
8
Classes: [N, S, V, F, Q]</p>
9
<table>
10
<thead>
11
<tr>
12
<th>Classes</th>
13
<th>Images</th>
14
</tr>
15
</thead>
16
<tbody>
17
<tr>
18
<td>N (Normal beat)</td>
19
<td>90.589</td>
20
</tr>
21
<tr>
22
<td>S  (Supraventricular ectopic beat)</td>
23
<td>2.779</td>
24
</tr>
25
<tr>
26
<td>V (Ventricular ectopic beat)</td>
27
<td>7.236</td>
28
</tr>
29
<tr>
30
<td>F (Fusion beat)</td>
31
<td>803</td>
32
</tr>
33
<tr>
34
<td>Q (Unknown beat)</td>
35
<td>8.038</td>
36
</tr>
37
</tbody>
38
</table>
39
<p>More information about the acquisition of this dataset can be found at: <a rel="noreferrer nofollow" aria-label="https://github.com/analiviafr/arrhythmia_classifier (opens in a new tab)" target="_blank" href="https://github.com/analiviafr/arrhythmia_classifier">https://github.com/analiviafr/arrhythmia_classifier</a></p></div></div></div>