|
a |
|
b/README.md |
|
|
1 |
<div class="sc-cmRAlD dkqmWS"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-jgvlka jFuPjz"><div class="sc-gzqKSP tNtjD"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-bMmLMY ZURWJ"><h1>ECG IMAGES</h1> |
|
|
2 |
<p>This dataset is composed of Electrocardiogram (ECG) images obtained from the database <a rel="noreferrer nofollow" aria-label="MIT-BIH Arrhythmia (opens in a new tab)" target="_blank" href="https://physionet.org/content/mitdb/1.0.0/">MIT-BIH Arrhythmia</a>. For that, the ECG signals were pre-processed, generating 109.445 images with a resolution of 256x256. In sequence, five cardiac arrhythmia superclasses recommended by <strong>AAMI</strong> were selected for work.</p> |
|
|
3 |
<h3>ECG images dataset:</h3> |
|
|
4 |
<p>Number of Samples: 109445<br> |
|
|
5 |
Number of Categories: 5<br> |
|
|
6 |
Image Resolution: 256x256<br> |
|
|
7 |
Data Source: Physionet's MIT-BIH Arrhythmia Dataset<br> |
|
|
8 |
Classes: [N, S, V, F, Q]</p> |
|
|
9 |
<table> |
|
|
10 |
<thead> |
|
|
11 |
<tr> |
|
|
12 |
<th>Classes</th> |
|
|
13 |
<th>Images</th> |
|
|
14 |
</tr> |
|
|
15 |
</thead> |
|
|
16 |
<tbody> |
|
|
17 |
<tr> |
|
|
18 |
<td>N (Normal beat)</td> |
|
|
19 |
<td>90.589</td> |
|
|
20 |
</tr> |
|
|
21 |
<tr> |
|
|
22 |
<td>S (Supraventricular ectopic beat)</td> |
|
|
23 |
<td>2.779</td> |
|
|
24 |
</tr> |
|
|
25 |
<tr> |
|
|
26 |
<td>V (Ventricular ectopic beat)</td> |
|
|
27 |
<td>7.236</td> |
|
|
28 |
</tr> |
|
|
29 |
<tr> |
|
|
30 |
<td>F (Fusion beat)</td> |
|
|
31 |
<td>803</td> |
|
|
32 |
</tr> |
|
|
33 |
<tr> |
|
|
34 |
<td>Q (Unknown beat)</td> |
|
|
35 |
<td>8.038</td> |
|
|
36 |
</tr> |
|
|
37 |
</tbody> |
|
|
38 |
</table> |
|
|
39 |
<p>More information about the acquisition of this dataset can be found at: <a rel="noreferrer nofollow" aria-label="https://github.com/analiviafr/arrhythmia_classifier (opens in a new tab)" target="_blank" href="https://github.com/analiviafr/arrhythmia_classifier">https://github.com/analiviafr/arrhythmia_classifier</a></p></div></div></div> |