[f391e7]: / NIH-Chest-X-ray-dataset.py

Download this file

225 lines (179 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2022 Cristóbal Alcázar
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NIH Chest X-ray Dataset"""
import os
import datasets
from requests import get
from pandas import read_csv
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{Wang_2017,
doi = {10.1109/cvpr.2017.369},
url = {https://doi.org/10.1109%2Fcvpr.2017.369},
year = 2017,
month = {jul},
publisher = {{IEEE}
},
author = {Xiaosong Wang and Yifan Peng and Le Lu and Zhiyong Lu and Mohammadhadi Bagheri and Ronald M. Summers},
title = {{ChestX}-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases},
booktitle = {2017 {IEEE} Conference on Computer Vision and Pattern Recognition ({CVPR})}
}
"""
_DESCRIPTION = """\
The NIH Chest X-ray dataset consists of 100,000 de-identified images of chest x-rays. The images are in PNG format.
The data is provided by the NIH Clinical Center and is available through the NIH download site: https://nihcc.app.box.com/v/ChestXray-NIHCC
"""
_HOMEPAGE = "https://nihcc.app.box.com/v/chestxray-nihcc"
_REPO = "https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/data"
_IMAGE_URLS = [
f"{_REPO}/images/images_001.zip",
f"{_REPO}/images/images_002.zip",
f"{_REPO}/images/images_003.zip",
f"{_REPO}/images/images_004.zip",
f"{_REPO}/images/images_005.zip",
f"{_REPO}/images/images_006.zip",
f"{_REPO}/images/images_007.zip",
f"{_REPO}/images/images_008.zip",
f"{_REPO}/images/images_009.zip",
f"{_REPO}/images/images_010.zip",
f"{_REPO}/images/images_011.zip",
f"{_REPO}/images/images_012.zip"
#'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_001.tar.gz',
#'https://huggingface.co/datasets/alkzar90/NIH-Chest-X-ray-dataset/resolve/main/dummy/0.0.0/images_002.tar.gz'
]
_URLS = {
"train_val_list": f"{_REPO}/train_val_list.txt",
"test_list": f"{_REPO}/test_list.txt",
"labels": f"{_REPO}/Data_Entry_2017_v2020.csv",
"BBox": f"{_REPO}/BBox_List_2017.csv",
"image_urls": _IMAGE_URLS
}
_LABEL2IDX = {"No Finding": 0,
"Atelectasis": 1,
"Cardiomegaly": 2,
"Effusion": 3,
"Infiltration": 4,
"Mass": 5,
"Nodule": 6,
"Pneumonia": 7,
"Pneumothorax": 8,
"Consolidation": 9,
"Edema": 10,
"Emphysema": 11,
"Fibrosis": 12,
"Pleural_Thickening": 13,
"Hernia": 14}
_NAMES = list(_LABEL2IDX.keys())
class ChestXray14Config(datasets.BuilderConfig):
"""NIH Image Chest X-ray14 configuration."""
def __init__(self, name, **kwargs):
super(ChestXray14Config, self).__init__(
version=datasets.Version("1.0.0"),
name=name,
description="NIH ChestX-ray14",
**kwargs,
)
class ChestXray14(datasets.GeneratorBasedBuilder):
"""NIH Image Chest X-ray14 dataset."""
BUILDER_CONFIGS = [
ChestXray14Config("image-classification"),
ChestXray14Config("object-detection"),
]
def _info(self):
if self.config.name == "image-classification":
features = datasets.Features(
{
"image": datasets.Image(),
"labels": datasets.features.Sequence(
datasets.features.ClassLabel(
num_classes=len(_NAMES),
names=_NAMES
)
),
}
)
keys = ("image", "labels")
if self.config.name == "object-detection":
features = datasets.Features(
{
"image_id": datasets.Value("string"),
"patient_id": datasets.Value("int32"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
}
)
object_dict = {
"image_id": datasets.Value("string"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
}
features["objects"] = [object_dict]
keys = ("image", "objects")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=keys,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Get the image names that belong to the train-val dataset
logger.info("Downloading the train_val_list image names")
train_val_list = get(_URLS['train_val_list']).iter_lines()
train_val_list = set([x.decode('UTF8') for x in train_val_list])
logger.info(f"Check train_val_list: {train_val_list}")
# Create list for store the name of the images for each dataset
train_files = []
test_files = []
# Download batches
data_files = dl_manager.download_and_extract(_URLS["image_urls"])
# Iterate trought image folder and check if they belong to
# the trainset or testset
for batch in data_files:
logger.info(f"Batch for data_files: {batch}")
path_files = dl_manager.iter_files(batch)
for img in path_files:
if os.path.basename(img) in train_val_list:
train_files.append(img)
else:
test_files.append(img)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": train_files
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": test_files
}
)
]
def _generate_examples(self, files):
if self.config.name == "image-classification":
# Read csv with image labels
label_csv = read_csv(_URLS["labels"])
for i, path in enumerate(files):
file_name = os.path.basename(path)
# Get image id to filter the respective row of the csv
image_id = file_name
image_labels = label_csv[label_csv["Image Index"] == image_id]["Finding Labels"].values[0].split("|")
if file_name.endswith(".png"):
yield i, {
"image": path,
"labels": image_labels,
}