--- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -<div class="sc-kdrUpr eZtUed"><div class="sc-UEtKG dGqiYy sc-hDzlxo bEIZRR"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-fHzVOS cUYeeo"><div class="sc-davvxH nUNNB"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-jCNfQM igJSrG"><h3>Context</h3> +<div class="sc-kdrUpr eZtUed"><div class="sc-UEtKG dGqiYy sc-hDzlxo bEIZRR"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">Lung Nodule Malignancy</h2></div></div></div><div class="sc-fHzVOS cUYeeo"><div class="sc-davvxH nUNNB"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-jCNfQM igJSrG"><h3>Context</h3> <p>The DataScienceBowl covered the whole process of diagnosing lung cancer and I am to make the individual steps more clear. After segmenting lungs and identifying suspicious nodes, it is important to classify them as malignant or benign.</p> <h3>Content</h3> <p>This dataset consists of several thousand examples formatted in multipage TIFF (for use with tools like ImageJ and KNIME) and HDF5 (for Python and R).</p>