from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Activation
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import MaxPool2D
from tensorflow.keras.layers import Dense
import tensorflow as tf
import h5py
from .blocks import BilinearInterpolation, pool_rois, create_pyramid_features, get_weights_from_hdf5_group, \
get_initial_weights, RetinaNetClassifier, Transpose2D_block, Upsample2D_block
from .utils import get_layer_number, to_tuple, call_cascade
def build_xnet(backbone, classes, skip_connection_layers,
decoder_filters=(256, 128, 64, 32, 16),
upsample_rates=(2, 2, 2, 2, 2),
n_upsample_blocks=5,
block_type='upsampling',
activation='sigmoid',
use_batchnorm=True):
input = backbone.input
# print(n_upsample_blocks)
if block_type == 'transpose':
up_block = Transpose2D_block
else:
up_block = Upsample2D_block
if len(skip_connection_layers) > n_upsample_blocks:
downsampling_layers = skip_connection_layers[int(len(skip_connection_layers) / 2):]
skip_connection_layers = skip_connection_layers[:int(len(skip_connection_layers) / 2)]
else:
downsampling_layers = skip_connection_layers
# convert layer names to indices
skip_connection_idx = ([get_layer_number(backbone, l) if isinstance(l, str) else l
for l in skip_connection_layers])
skip_layers_list = [backbone.layers[skip_connection_idx[i]].output for i in range(len(skip_connection_idx))]
downsampling_idx = ([get_layer_number(backbone, l) if isinstance(l, str) else l
for l in downsampling_layers])
downsampling_list = [backbone.layers[downsampling_idx[i]].output for i in range(len(downsampling_idx))]
downterm = [None] * (n_upsample_blocks + 1)
for i in range(len(downsampling_idx)):
# print(downsampling_list[0])
# print(backbone.output)
# print("")
if downsampling_list[0].shape == backbone.output.shape:
# print("VGG16 should be!")
downterm[n_upsample_blocks - i] = downsampling_list[i]
else:
downterm[n_upsample_blocks - i - 1] = downsampling_list[i]
downterm[-1] = backbone.output
# print("downterm = {}".format(downterm))
interm = [None] * (n_upsample_blocks + 1) * (n_upsample_blocks + 1)
for i in range(len(skip_connection_idx)):
interm[-i * (n_upsample_blocks + 1) + (n_upsample_blocks + 1) * (n_upsample_blocks - 1)] = skip_layers_list[i]
interm[(n_upsample_blocks + 1) * n_upsample_blocks] = backbone.output
for j in range(n_upsample_blocks):
for i in range(n_upsample_blocks - j):
upsample_rate = to_tuple(upsample_rates[i])
if i == 0 and j < n_upsample_blocks - 1 and len(skip_connection_layers) < n_upsample_blocks:
interm[(n_upsample_blocks + 1) * i + j + 1] = None
elif j == 0:
if downterm[i + 1] is not None:
interm[(n_upsample_blocks + 1) * i + j + 1] = up_block(decoder_filters[n_upsample_blocks - i - 2],
i + 1, j + 1, upsample_rate=upsample_rate,
skip=interm[(n_upsample_blocks + 1) * i + j],
use_batchnorm=use_batchnorm)(downterm[i + 1])
else:
interm[(n_upsample_blocks + 1) * i + j + 1] = None
else:
interm[(n_upsample_blocks + 1) * i + j + 1] = up_block(decoder_filters[n_upsample_blocks - i - 2],
i + 1, j + 1, upsample_rate=upsample_rate,
skip=interm[(n_upsample_blocks + 1) * i: (
n_upsample_blocks + 1) * i + j + 1],
use_batchnorm=use_batchnorm)(
interm[(n_upsample_blocks + 1) * (i + 1) + j])
x = Conv2D(classes, (3, 3), padding='same', name='final_conv')(interm[n_upsample_blocks])
x = Activation(activation, name=activation)(x)
model = Model(input, x)
return model
class STN(tf.keras.layers.Layer):
def __init__(self, in_shape: tuple, mask_resize: int = 128,
network_structure=((20, 5), (20, 5)),
dense_neurons=50, load_align_model=True,
align_model_weights=None, freeze_align_model=False):
super(STN, self).__init__()
assert not in_shape[1] % mask_resize, "The STN size must be a multiple of mask size"
trainable = not freeze_align_model
self.in_shape = in_shape
self.mask_resize = mask_resize
self.network_structure = network_structure
self.dense_neurons = dense_neurons
self.load_align_model = load_align_model
self.align_model_weights = align_model_weights
self.freeze_align_model = freeze_align_model
weights = [{}] * (2 + len(network_structure))
if load_align_model:
print("Loading alignment model")
if align_model_weights is None:
raise ImportError('`load_weights` requires h5py.')
with h5py.File(align_model_weights, mode='r') as f:
if 'layer_names' not in f.attrs and 'model_weights' in f:
f = f['model_weights']
weights = get_weights_from_hdf5_group(f)
if hasattr(f, 'close'):
f.close()
elif hasattr(f.file, 'close'):
f.file.close()
else:
weights[-1] = {'weights': get_initial_weights(dense_neurons)}
assert len(weights) == 2 + len(network_structure), "The weights do not match with the architectue"
self.blocks = [MaxPool2D(pool_size=(in_shape[1] // mask_resize, in_shape[2] // mask_resize),
name='locnet_input_adaptation')]
for i, (n, f) in enumerate(network_structure):
self.blocks.append(MaxPool2D(pool_size=(2, 2), name='locnet_pooling' + str(i)))
self.blocks.append(Conv2D(n, (f, f), trainable=trainable, **weights[i], name='locnet_conv' + str(i)))
self.blocks.append(Flatten(name='locnet_flatten'))
self.blocks.append(Dense(dense_neurons, trainable=trainable, **weights[-2], name='locnet_dense'))
self.blocks.append(Activation('relu', name='locnet_relu'))
self.blocks.append(Dense(6, trainable=trainable, **weights[-1], name='locnet_alignment'))
def call(self, input_tensor: tf.Tensor, training: bool = True):
locnet = call_cascade(self.blocks,
input_tensor,
training=training)
return locnet
def get_config(self):
config = super().get_config().copy()
config.update({
'in_shape': self.in_shape,
'mask_resize': self.mask_resize,
'network_structure': self.network_structure,
'dense_neurons': self.dense_neurons,
'load_align_model': self.load_align_model,
'align_model_weights': self.align_model_weights,
'freeze_align_model': self.freeze_align_model,
})
return config
def build_BScore(backbone,
skip_connection_layers=('stage1_unit1_relu1', 'stage2_unit2_relu1',
'stage3_unit2_relu1', 'stage4_unit2_relu1'),
explict_self_attention=True,
pyramid_feature_size=64,
classes=4,
class_width=8,
class_depth=3
):
# convert layer names to indices
skip_connection_idx = ([get_layer_number(backbone, l) if isinstance(l, str) else l
for l in skip_connection_layers])
skip_layers_list = [backbone.layers[skip_connection_idx[i]].output for i in range(len(skip_connection_idx))]
locnet_alignment = backbone.layers[get_layer_number(backbone, 'stn')]
aligned_features = []
for c in skip_layers_list:
x = BilinearInterpolation(c.shape[1:3])([c, locnet_alignment.output])
if explict_self_attention:
x = tf.multiply(x, tf.image.resize(backbone.output, x.shape[1:3]))
d = tf.reshape(x, shape=[-1] + c.shape[1:].as_list())
aligned_features.append(d)
pext = []
for af in aligned_features:
p = tf.keras.layers.Lambda(lambda x: tf.map_fn(pool_rois, x))(af)
p = tf.reshape(p, (-1, *p.shape[2:]))
pext.append(p)
fpn_feats = create_pyramid_features([pext[0], pext[1], pext[2], pext[3]], feature_size=pyramid_feature_size)
rn_class = []
b = tf.reshape(fpn_feats[-1], (-1, 6, *fpn_feats[-1].shape[1:])) # use the higher level one only
for i in range(6):
rn = RetinaNetClassifier(class_width, class_depth, classes)(b[:, i, :, :, :])
rn = tf.keras.layers.GlobalAveragePooling2D()(rn)
rn = tf.keras.layers.Activation('softmax')(rn)
rn_class.append(rn)
sact = tf.reshape(tf.stack(rn_class, axis=1), (-1, 3, 2, 4))
model = Model(backbone.input, sact)
return model