[4d6235]: / indrops.py

Download this file

1786 lines (1449 with data), 87.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
import os, subprocess
import itertools
import operator
from collections import defaultdict, OrderedDict
import errno
# cPickle is a faster version of pickle that isn't installed in python3
# inserted try statement just in case
try:
import cPickle as pickle
except:
import pickle
from io import BytesIO
import numpy as np
import re
import shutil
import gzip
# product: product(A, B) returns the same as ((x,y) for x in A for y in B).
# combination: Return r length subsequences of elements from the input iterable.
from itertools import product, combinations
import time
import yaml
import tempfile
import string
from contextlib import contextmanager
# -----------------------
#
# Helper functions
#
# -----------------------
def string_hamming_distance(str1, str2):
"""
Fast hamming distance over 2 strings known to be of same length.
In information theory, the Hamming distance between two strings of equal
length is the number of positions at which the corresponding symbols
are different.
eg "karolin" and "kathrin" is 3.
"""
return sum(itertools.imap(operator.ne, str1, str2))
___tbl = {'A':'T', 'T':'A', 'C':'G', 'G':'C', 'N':'N'}
def rev_comp(seq):
return ''.join(___tbl[s] for s in seq[::-1])
def to_fastq(name, seq, qual):
"""
Return string that can be written to fastQ file
"""
return '@'+name+'\n'+seq+'\n+\n'+qual+'\n'
def to_fastq_lines(bc, umi, seq, qual, read_name=''):
"""
Return string that can be written to fastQ file
"""
reformated_name = read_name.replace(':', '_')
name = '%s:%s:%s' % (bc, umi, reformated_name)
return to_fastq(name, seq, qual)
def from_fastq(handle):
while True:
name = next(handle).rstrip()[1:] #Read name
seq = next(handle).rstrip() #Read seq
next(handle) #+ line
qual = next(handle).rstrip() #Read qual
if not name or not seq or not qual:
break
yield name, seq, qual
def seq_neighborhood(seq, n_subs=1):
"""
Given a sequence, yield all sequences within n_subs substitutions of
that sequence by looping through each combination of base pairs within
each combination of positions.
"""
for positions in combinations(range(len(seq)), n_subs):
# yields all unique combinations of indices for n_subs mutations
for subs in product(*("ATGCN",)*n_subs):
# yields all combinations of possible nucleotides for strings of length
# n_subs
seq_copy = list(seq)
for p, s in zip(positions, subs):
seq_copy[p] = s
yield ''.join(seq_copy)
def build_barcode_neighborhoods(barcode_file, expect_reverse_complement=True):
"""
Given a set of barcodes, produce sequences which can unambiguously be
mapped to these barcodes, within 2 substitutions. If a sequence maps to
multiple barcodes, get rid of it. However, if a sequences maps to a bc1 with
1change and another with 2changes, keep the 1change mapping.
"""
# contains all mutants that map uniquely to a barcode
clean_mapping = dict()
# contain single or double mutants
mapping1 = defaultdict(set)
mapping2 = defaultdict(set)
#Build the full neighborhood and iterate through barcodes
with open(barcode_file, 'rU') as f:
# iterate through each barcode (rstrip cleans string of whitespace)
for line in f:
barcode = line.rstrip()
if expect_reverse_complement:
barcode = rev_comp(line.rstrip())
# each barcode obviously maps to itself uniquely
clean_mapping[barcode] = barcode
# for each possible mutated form of a given barcode, either add
# the origin barcode into the set corresponding to that mutant or
# create a new entry for a mutant not already in mapping1
# eg: barcodes CATG and CCTG would be in the set for mutant CTTG
# but only barcode CATG could generate mutant CANG
for n in seq_neighborhood(barcode, 1):
mapping1[n].add(barcode)
# same as above but with double mutants
for n in seq_neighborhood(barcode, 2):
mapping2[n].add(barcode)
# take all single-mutants and find those that could only have come from one
# specific barcode
for k, v in mapping1.items():
if k not in clean_mapping:
if len(v) == 1:
clean_mapping[k] = list(v)[0]
for k, v in mapping2.items():
if k not in clean_mapping:
if len(v) == 1:
clean_mapping[k] = list(v)[0]
del mapping1
del mapping2
return clean_mapping
def check_dir(path):
"""
Checks if directory already exists or not and creates it if it doesn't
"""
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
def print_to_stderr(msg, newline=True):
"""
Wrapper to eventually write to stderr
"""
sys.stderr.write(str(msg))
if newline:
sys.stderr.write('\n')
def worker_filter(iterable, worker_index, total_workers):
return (p for i,p in enumerate(iterable) if (i-worker_index)%total_workers==0)
class FIFO():
"""
A context manager for a named pipe.
"""
def __init__(self, filename="", suffix="", prefix="tmp_fifo_dir", dir=None):
if filename:
self.filename = filename
else:
self.tmpdir = tempfile.mkdtemp(suffix=suffix, prefix=prefix, dir=dir)
self.filename = os.path.join(self.tmpdir, 'fifo')
def __enter__(self):
if os.path.exists(self.filename):
os.unlink(self.filename)
os.mkfifo(self.filename)
return self
def __exit__(self, type, value, traceback):
os.remove(self.filename)
if hasattr(self, 'tmpdir'):
shutil.rmtree(self.tmpdir)
# -----------------------
#
# Core objects
#
# -----------------------
class IndropsProject():
def __init__(self, project_yaml_file_handle, read_only=False):
self.yaml = yaml.load(project_yaml_file_handle)
self.name = self.yaml['project_name']
self.project_dir = self.yaml['project_dir']
self.libraries = OrderedDict()
self.runs = OrderedDict()
self.read_only = read_only
for run in self.yaml['sequencing_runs']:
"""
After filtering, each sequencing run generates between 1 ... X files with filtered reads.
X = (N x M)
- N: The run is often split into several files (a typical NextSeq run is split into L001,
L002, L003, L004 which match different lanes, but this can also be done artificially.
- M: The same run might contain several libraries. The demultiplexing can be handled by the script (or externally).
If demultiplexing is done externally, there will be a different .fastq file for each library.
"""
version = run['version']
filtered_filename = '{library_name}_{run_name}'
if run['version'] == 'v3':
filtered_filename += '_{library_index}'
# Prepare to iterate over run split into several files
if 'split_affixes' in run:
filtered_filename += '_{split_affix}'
split_affixes = run['split_affixes']
else:
split_affixes = ['']
filtered_filename += '.fastq'
# Prepare to iterate over libraries
if 'libraries' in run:
run_libraries = run['libraries']
elif 'library_name' in run:
run_libraries = [{'library_name' : run['library_name'], 'library_prefix':''}]
else:
raise Exception('No library name or libraries specified.')
if run['version']=='v1' or run['version']=='v2':
for affix in split_affixes:
for lib in run_libraries:
lib_name = lib['library_name']
if lib_name not in self.libraries:
self.libraries[lib_name] = IndropsLibrary(name=lib_name, project=self, version=run['version'])
else:
assert self.libraries[lib_name].version == run['version']
if version == 'v1':
metaread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R1', library_prefix=lib['library_prefix']))
bioread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R2', library_prefix=lib['library_prefix']))
elif version == 'v2':
metaread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R2', library_prefix=lib['library_prefix']))
bioread_filename = os.path.join(run['dir'],run['fastq_path'].format(split_affix=affix, read='R1', library_prefix=lib['library_prefix']))
filtered_part_filename = filtered_filename.format(run_name=run['name'], split_affix=affix, library_name=lib_name)
filtered_part_path = os.path.join(self.project_dir, lib_name, 'filtered_parts', filtered_part_filename)
part = V1V2Filtering(filtered_fastq_filename=filtered_part_path,
project=self,
bioread_filename=bioread_filename,
metaread_filename=metaread_filename,
run_name=run['name'],
library_name=lib_name,
part_name=affix)
if run['name'] not in self.runs:
self.runs[run['name']] = []
self.runs[run['name']].append(part)
self.libraries[lib_name].parts.append(part)
elif run['version'] == 'v3' or run['version'] == 'v3-miseq':
for affix in split_affixes:
filtered_part_filename = filtered_filename.format(run_name=run['name'], split_affix=affix,
library_name='{library_name}', library_index='{library_index}')
part_filename = os.path.join(self.project_dir, '{library_name}', 'filtered_parts', filtered_part_filename)
input_filename = os.path.join(run['dir'], run['fastq_path'].format(split_affix=affix, read='{read}'))
part = V3Demultiplexer(run['libraries'], project=self, part_filename=part_filename, input_filename=input_filename, run_name=run['name'], part_name=affix,
run_version_details=run['version'])
if run['name'] not in self.runs:
self.runs[run['name']] = []
self.runs[run['name']].append(part)
for lib in run_libraries:
lib_name = lib['library_name']
lib_index = lib['library_index']
if lib_name not in self.libraries:
self.libraries[lib_name] = IndropsLibrary(name=lib_name, project=self, version=run['version'])
self.libraries[lib_name].parts.append(part.libraries[lib_index])
@property
def paths(self):
if not hasattr(self, '_paths'):
script_dir = os.path.dirname(os.path.realpath(__file__))
#Read defaults
with open(os.path.join(script_dir, 'default_parameters.yaml'), 'r') as f:
paths = yaml.load(f)['paths']
# Update with user provided values
paths.update(self.yaml['paths'])
paths['python'] = os.path.join(paths['python_dir'], 'python')
paths['java'] = os.path.join(paths['java_dir'], 'java')
paths['bowtie'] = os.path.join(paths['bowtie_dir'], 'bowtie')
paths['samtools'] = os.path.join(paths['samtools_dir'], 'samtools')
paths['trimmomatic_jar'] = os.path.join(script_dir, 'bins', 'trimmomatic-0.33.jar')
paths['rsem_tbam2gbam'] = os.path.join(paths['rsem_dir'], 'rsem-tbam2gbam')
paths['rsem_prepare_reference'] = os.path.join(paths['rsem_dir'], 'rsem-prepare-reference')
self._paths = type('Paths_anonymous_object',(object,),paths)()
self._paths.trim_polyA_and_filter_low_complexity_reads_py = os.path.join(script_dir, 'trim_polyA_and_filter_low_complexity_reads.py')
self._paths.quantify_umifm_from_alignments_py = os.path.join(script_dir, 'quantify_umifm_from_alignments.py')
self._paths.count_barcode_distribution_py = os.path.join(script_dir, 'count_barcode_distribution.py')
self._paths.gel_barcode1_list = os.path.join(script_dir, 'ref/barcode_lists/gel_barcode1_list.txt')
self._paths.gel_barcode2_list = os.path.join(script_dir, 'ref/barcode_lists/gel_barcode2_list.txt')
return self._paths
@property
def parameters(self):
if not hasattr(self, '_parameters'):
#Read defaults
with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'default_parameters.yaml'), 'r') as f:
self._parameters = yaml.load(f)['parameters']
# Update with user provided values
if 'parameters' in self.yaml:
for k, d in self.yaml['parameters'].items():
self._parameters[k].update(d)
return self._parameters
@property
def gel_barcode1_revcomp_list_neighborhood(self):
if not hasattr(self, '_gel_barcode1_list_neighborhood'):
self._gel_barcode1_revcomp_list_neighborhood = build_barcode_neighborhoods(self.paths.gel_barcode1_list, True)
return self._gel_barcode1_revcomp_list_neighborhood
@property
def gel_barcode2_revcomp_list_neighborhood(self):
if not hasattr(self, '_gel_barcode2_revcomp_list_neighborhood'):
self._gel_barcode2_revcomp_list_neighborhood = build_barcode_neighborhoods(self.paths.gel_barcode2_list, True)
return self._gel_barcode2_revcomp_list_neighborhood
@property
def gel_barcode2_list_neighborhood(self):
if not hasattr(self, '_gel_barcode2_list_neighborhood'):
self._gel_barcode2_list_neighborhood = build_barcode_neighborhoods(self.paths.gel_barcode2_list, False)
return self._gel_barcode2_list_neighborhood
@property
def stable_barcode_names(self):
if not hasattr(self, '_stable_barcode_names'):
with open(self.paths.gel_barcode1_list) as f:
rev_bc1s = [rev_comp(line.rstrip()) for line in f]
with open(self.paths.gel_barcode2_list) as f:
bc2s = [line.rstrip() for line in f]
rev_bc2s = [rev_comp(bc2) for bc2 in bc2s]
# V1, V2 names:
v1v2_names = {}
barcode_iter = product(rev_bc1s, rev_bc2s)
name_iter = product(string.ascii_uppercase, repeat=4)
for barcode, name in zip(barcode_iter, name_iter):
v1v2_names['-'.join(barcode)] = 'bc' + ''.join(name)
# V3 names:
v3_names = {}
barcode_iter = product(bc2s, rev_bc2s)
name_iter = product(string.ascii_uppercase, repeat=4)
for barcode, name in zip(barcode_iter, name_iter):
v3_names['-'.join(barcode)] = 'bc' + ''.join(name)
self._stable_barcode_names = {
'v1' : v1v2_names,
'v2' : v1v2_names,
'v3': v3_names,
'v3-miseq':v3_names,
}
return self._stable_barcode_names
def project_check_dir(self, path):
if not self.read_only:
check_dir(path)
def filter_gtf(self, gzipped_transcriptome_gtf, gtf_with_genenames_in_transcript_id):
# A small number of gene are flagged as having two different biotypes.
gene_biotype_dict = defaultdict(set)
# Read through GTF file once to get all gene names
for line in subprocess.Popen(["gzip", "--stdout", "-d", gzipped_transcriptome_gtf], stdout=subprocess.PIPE).stdout:
# Skip non-gene feature lines.
if '\tgene\t' not in line:
continue
gene_biotype_match = re.search(r'gene_biotype \"(.*?)\";', line)
gene_name_match = re.search(r'gene_name \"(.*?)\";', line)
if gene_name_match and gene_biotype_match:
gene_name = gene_name_match.group(1)
gene_biotype = gene_biotype_match.group(1)
# Record biotype.
gene_biotype_dict[gene_name].add(gene_biotype)
# Detect read-through genes by name. Name must be a fusion of two other gene names 'G1-G2'.
readthrough_genes = set()
for gene in gene_biotype_dict.keys():
if '-' in gene and len(gene.split('-')) == 2:
g1, g2 = gene.split('-')
if g1 in gene_biotype_dict and g2 in gene_biotype_dict:
readthrough_genes.add(gene)
# Detect pseudogenes: genes where all associated biotypes have 'pseudogene' in name
pseudogenes = set()
for gene, biotypes in gene_biotype_dict.items():
if all('pseudogene' in b for b in biotypes):
pseudogenes.add(gene)
all_genes = set(gene_biotype_dict.keys())
valid_genes = all_genes.difference(pseudogenes).difference(readthrough_genes)
transcripts_counter = defaultdict(int)
# Go through GTF file again, annotating each transcript_id with the gene and outputting to a new GTF file.
output_gtf = open(gtf_with_genenames_in_transcript_id, 'w')
for line in subprocess.Popen(["gzip", "--stdout", "-d", gzipped_transcriptome_gtf], stdout=subprocess.PIPE).stdout:
# Skip non-transcript feature lines.
if 'transcript_id' not in line:
continue
gene_name_match = re.search(r'gene_name \"(.*?)\";', line)
if gene_name_match:
gene_name = gene_name_match.group(1)
if gene_name in valid_genes:
# An unusual edgecase in the GTF for Danio Rerio rel89
if ' ' in gene_name:
gene_name = gene_name.replace(' ', '_')
out_line = re.sub(r'(?<=transcript_id ")(.*?)(?=";)', r'\1|'+gene_name, line)
output_gtf.write(out_line)
if '\ttranscript\t' in line:
transcripts_counter['valid'] += 1
elif gene_name in pseudogenes and '\ttranscript\t' in line:
transcripts_counter['pseudogenes'] += 1
elif gene_name in readthrough_genes and '\ttranscript\t' in line:
transcripts_counter['readthrough_genes'] += 1
output_gtf.close()
print_to_stderr('Filtered GTF contains %d transcripts (%d genes)' % (transcripts_counter['valid'], len(valid_genes)))
print_to_stderr(' - ignored %d transcripts from %d pseudogenes)' % (transcripts_counter['pseudogenes'], len(pseudogenes)))
print_to_stderr(' - ignored %d read-through transcripts (%d genes)' % (transcripts_counter['readthrough_genes'], len(readthrough_genes)))
def build_transcriptome(self, gzipped_genome_softmasked_fasta_filename, gzipped_transcriptome_gtf,
mode='strict'):
import pyfasta
index_dir = os.path.dirname(self.paths.bowtie_index)
self.project_check_dir(index_dir)
genome_filename = os.path.join(index_dir, '.'.join(gzipped_genome_softmasked_fasta_filename.split('.')[:-1]))
gtf_filename = os.path.join(index_dir, gzipped_transcriptome_gtf.split('/')[-1])
gtf_prefix = '.'.join(gtf_filename.split('.')[:-2])
# gtf_with_genenames_in_transcript_id = gtf_prefix + '.annotated.gtf'
gtf_with_genenames_in_transcript_id = self.paths.bowtie_index + '.gtf'
print_to_stderr('Filtering GTF')
self.filter_gtf(gzipped_transcriptome_gtf, gtf_with_genenames_in_transcript_id)
# accepted_gene_biotypes_for_NA_transcripts = set(["protein_coding","IG_V_gene","IG_J_gene","TR_J_gene","TR_D_gene","TR_V_gene","IG_C_gene","IG_D_gene","TR_C_gene"])
# tsl1_or_tsl2_strings = ['transcript_support_level "1"', 'transcript_support_level "1 ', 'transcript_support_level "2"', 'transcript_support_level "2 ']
# tsl_NA = 'transcript_support_level "NA'
# def filter_ensembl_transcript(transcript_line):
# line_valid_for_output = False
# if mode == 'strict':
# for string in tsl1_or_tsl2_strings:
# if string in line:
# line_valid_for_output = True
# break
# if tsl_NA in line:
# gene_biotype = re.search(r'gene_biotype \"(.*?)\";', line)
# if gene_biotype and gene_biotype.group(1) in accepted_gene_biotypes_for_NA_transcripts:
# line_valid_for_output = True
# return line_valid_for_output
# elif mode == 'all_ensembl':
# line_valid_for_output = True
# return line_valid_for_output
# print_to_stderr('Filtering GTF')
# output_gtf = open(gtf_with_genenames_in_transcript_id, 'w')
# for line in subprocess.Popen(["gzip", "--stdout", "-d", gzipped_transcriptome_gtf], stdout=subprocess.PIPE).stdout:
# if 'transcript_id' not in line:
# continue
# if filter_ensembl_transcript(line):
# gene_name = re.search(r'gene_name \"(.*?)\";', line)
# if gene_name:
# gene_name = gene_name.group(1)
# out_line = re.sub(r'(?<=transcript_id ")(.*?)(?=";)', r'\1|'+gene_name, line)
# output_gtf.write(out_line)
# output_gtf.close()
print_to_stderr('Gunzipping Genome')
p_gzip = subprocess.Popen(["gzip", "-dfc", gzipped_genome_softmasked_fasta_filename], stdout=open(genome_filename, 'wb'))
if p_gzip.wait() != 0:
raise Exception(" Error in rsem-prepare reference ")
p_rsem = subprocess.Popen([self.paths.rsem_prepare_reference, '--bowtie', '--bowtie-path', self.paths.bowtie_dir,
'--gtf', gtf_with_genenames_in_transcript_id,
'--polyA', '--polyA-length', '5', genome_filename, self.paths.bowtie_index])
if p_rsem.wait() != 0:
raise Exception(" Error in rsem-prepare reference ")
print_to_stderr('Finding soft masked regions in transcriptome')
transcripts_fasta = pyfasta.Fasta(self.paths.bowtie_index + '.transcripts.fa')
soft_mask = {}
for tx, seq in transcripts_fasta.items():
seq = str(seq)
soft_mask[tx] = set((m.start(), m.end()) for m in re.finditer(r'[atcgn]+', seq))
with open(self.paths.bowtie_index + '.soft_masked_regions.pickle', 'w') as out:
pickle.dump(soft_mask, out)
class IndropsLibrary():
def __init__(self, name='', project=None, version=''):
self.project = project
self.name = name
self.parts = []
self.version = version
self.paths = {}
for lib_dir in ['filtered_parts', 'quant_dir']:
dir_path = os.path.join(self.project.project_dir, self.name, lib_dir)
self.project.project_check_dir(dir_path)
self.paths[lib_dir] = dir_path
self.paths = type('Paths_anonymous_object',(object,),self.paths)()
self.paths.abundant_barcodes_names_filename = os.path.join(self.project.project_dir, self.name, 'abundant_barcodes.pickle')
self.paths.filtering_statistics_filename = os.path.join(self.project.project_dir, self.name, self.name+'.filtering_stats.csv')
self.paths.barcode_abundance_histogram_filename = os.path.join(self.project.project_dir, self.name, self.name+'.barcode_abundance.png')
self.paths.barcode_abundance_by_barcode_filename = os.path.join(self.project.project_dir, self.name, self.name+'.barcode_abundance_by_barcode.png')
self.paths.missing_quants_filename = os.path.join(self.project.project_dir, self.name, self.name+'.missing_barcodes.pickle')
@property
def barcode_counts(self):
if not hasattr(self, '_barcode_counts'):
self._barcode_counts = defaultdict(int)
for part in self.parts:
for k, v in part.part_barcode_counts.items():
self._barcode_counts[k] += v
return self._barcode_counts
@property
def abundant_barcodes(self):
if not hasattr(self, '_abundant_barcodes'):
with open(self.paths.abundant_barcodes_names_filename) as f:
self._abundant_barcodes = pickle.load(f)
return self._abundant_barcodes
def sorted_barcode_names(self, min_reads=0, max_reads=10**10):
return [name for bc,(name,abun) in sorted(self.abundant_barcodes.items(), key=lambda i:-i[1][1]) if (abun>min_reads) & (abun<max_reads)]
def identify_abundant_barcodes(self, make_histogram=True, absolute_min_reads=250):
"""
Identify which barcodes are above the absolute minimal abundance,
and make a histogram summarizing the barcode distribution
"""
keep_barcodes = []
for k, v in self.barcode_counts.items():
if v > absolute_min_reads:
keep_barcodes.append(k)
abundant_barcodes = {}
print_to_stderr(" %d barcodes above absolute minimum threshold" % len(keep_barcodes))
for bc in keep_barcodes:
abundant_barcodes[bc] = (self.project.stable_barcode_names[self.version][bc], self.barcode_counts[bc])
self._abundant_barcodes = abundant_barcodes
with open(self.paths.abundant_barcodes_names_filename, 'w') as f:
pickle.dump(abundant_barcodes, f)
# Create table about the filtering process
with open(self.paths.filtering_statistics_filename, 'w') as filtering_stats:
header = ['Run', 'Part', 'Input Reads', 'Valid Structure', 'Surviving Trimmomatic', 'Surviving polyA trim and complexity filter']
if self.version == 'v1' or self.version == 'v2':
structure_parts = ['W1_in_R2', 'empty_read', 'No_W1', 'No_polyT', 'BC1', 'BC2', 'Umi_error']
header += ['W1 in R2', 'empty read', 'No W1 in R1', 'No polyT', 'BC1', 'BC2', 'UMI_contains_N']
elif self.version == 'v3' or self.version == 'v3-miseq':
structure_parts = ['Invalid_BC1', 'Invalid_BC2', 'UMI_contains_N']
header += ['Invalid BC1', 'Invalid BC2', 'UMI_contains_N']
trimmomatic_parts = ['dropped']
header += ['Dropped by Trimmomatic']
complexity_filter_parts = ['rejected_because_too_short', 'rejected_because_complexity_too_low']
header += ['Too short after polyA trim', 'Read complexity too low']
filtering_stats.write(','.join(header)+'\n')
for part in self.parts:
with open(part.filtering_metrics_filename) as f:
part_stats = yaml.load(f)
line = [part.run_name, part.part_name, part_stats['read_structure']['Total'], part_stats['read_structure']['Valid'], part_stats['trimmomatic']['output'], part_stats['complexity_filter']['output']]
line += [part_stats['read_structure'][k] if k in part_stats['read_structure'] else 0 for k in structure_parts]
line += [part_stats['trimmomatic'][k] if k in part_stats['trimmomatic'] else 0 for k in trimmomatic_parts]
line += [part_stats['complexity_filter'][k] if k in part_stats['complexity_filter'] else 0 for k in complexity_filter_parts]
line = [str(l) for l in line]
filtering_stats.write(','.join(line)+'\n')
print_to_stderr("Created Library filtering summary:")
print_to_stderr(" " + self.paths.filtering_statistics_filename)
# Make the histogram figure
if not make_histogram:
return
count_freq = defaultdict(int)
for bc, count in self.barcode_counts.items():
count_freq[count] += 1
x = np.array(count_freq.keys())
y = np.array(count_freq.values())
w = x*y
# need to use non-intenactive Agg backend
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(x, bins=np.logspace(0, 6, 50), weights=w, color='green')
ax.set_xscale('log')
ax.set_xlabel('Reads per barcode')
ax.set_ylabel('#reads coming from bin')
fig.savefig(self.paths.barcode_abundance_histogram_filename)
print_to_stderr("Created Barcode Abundance Histogram at:")
print_to_stderr(" " + self.paths.barcode_abundance_histogram_filename)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(list(self.barcode_counts.values()), bins=np.logspace(2, 6, 50), color='green')
ax.set_xlim((1, 10**6))
ax.set_xscale('log')
ax.set_xlabel('Reads per barcode')
ax.set_ylabel('# of barcodes')
fig.savefig(self.paths.barcode_abundance_by_barcode_filename)
print_to_stderr("Created Barcode Abundance Histogram by barcodes at:")
print_to_stderr(" " + self.paths.barcode_abundance_by_barcode_filename)
def sort_reads_by_barcode(self, index=0):
self.parts[index].sort_reads_by_barcode(self.abundant_barcodes)
def get_reads_for_barcode(self, barcode, run_filter=[]):
for part in self.parts:
if (not run_filter) or (part.run_name in run_filter):
for line in part.get_reads_for_barcode(barcode):
yield line
def output_barcode_fastq(self, analysis_prefix='', min_reads=750, max_reads=10**10, total_workers=1, worker_index=0, run_filter=[]):
if analysis_prefix:
analysis_prefix = analysis_prefix + '.'
output_dir_path = os.path.join(self.project.project_dir, self.name, 'barcode_fastq')
self.project.project_check_dir(output_dir_path)
sorted_barcode_names = self.sorted_barcode_names(min_reads=min_reads, max_reads=max_reads)
# Identify which barcodes belong to this worker
barcodes_for_this_worker = []
i = worker_index
while i < len(sorted_barcode_names):
barcodes_for_this_worker.append(sorted_barcode_names[i])
i += total_workers
print_to_stderr("""[%s] This worker assigned %d out of %d total barcodes.""" % (self.name, len(barcodes_for_this_worker), len(sorted_barcode_names)))
for barcode in barcodes_for_this_worker:
barcode_fastq_filename = analysis_prefix+'%s.%s.fastq' % (self.name, barcode)
print_to_stderr(" "+barcode_fastq_filename)
with open(os.path.join(output_dir_path, barcode_fastq_filename), 'w') as f:
for line in self.get_reads_for_barcode(barcode, run_filter):
f.write(line)
def quantify_expression(self, analysis_prefix='', max_reads=10**10, min_reads=750, min_counts=0, total_workers=1, worker_index=0, no_bam=False, run_filter=[]):
if analysis_prefix:
analysis_prefix = analysis_prefix + '.'
sorted_barcode_names = self.sorted_barcode_names(min_reads=min_reads, max_reads=max_reads)
#print_to_stderr(" min_reads: %d sorted_barcode_names counts: %d" % (min_reads, len(sorted_barcode_names)))
# Identify which barcodes belong to this worker
barcodes_for_this_worker = []
i = worker_index
while i < len(sorted_barcode_names):
barcodes_for_this_worker.append(sorted_barcode_names[i])
i += total_workers
counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.counts.tsv' % (analysis_prefix, worker_index, total_workers))
ambig_counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.counts.tsv' % (analysis_prefix, worker_index, total_workers))
ambig_partners_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.partners' % (analysis_prefix, worker_index, total_workers))
metrics_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.metrics.tsv' % (analysis_prefix, worker_index, total_workers))
ignored_for_output_filename = counts_output_filename+'.ignored'
merged_bam_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.bam'% (analysis_prefix, worker_index, total_workers))
merged_bam_index_filename = merged_bam_filename + '.bai'
get_barcode_genomic_bam_filename = lambda bc: os.path.join(self.paths.quant_dir, '%s%s.genomic.sorted.bam' % (analysis_prefix, bc))
# If we wanted BAM output, and the merge BAM and merged BAM index are present, then we are done
if (not no_bam) and (os.path.isfile(merged_bam_filename) and os.path.isfile(merged_bam_index_filename)):
print_to_stderr('Indexed, merged BAM file detected for this worker. Done.')
return
# Otherwise, we have to check what we need to quantify
"""
Function to determine which barcodes this quantification worker might have already quantified.
This tries to handle interruption during any step of the process.
The worker is assigned some list of barcodes L. For every barcode:
- It could have been quantified
- but have less than min_counts ---> so it got written to `ignored` file.
- and quantification succeeded, meaning
1. there is a line (ending in \n) in the `metrics` file.
2. there is a line (ending in \n) in the `quantification` file.
3. there (could) be a line (ending in \n) in the `ambiguous quantification` file.
4. there (could) be a line (ending in \n) in the `ambiguous quantification partners` file.
[If any line doesn't end in \n, then likely the output of that line was interrupted!]
5. (If BAM output is desired) There should be a sorted genomic BAM
6. (If BAM output is desired) There should be a sorted genomic BAM index
"""
succesfully_previously_quantified = set()
previously_ignored = set()
header_written = False
if os.path.isfile(counts_output_filename) and os.path.isfile(metrics_output_filename):
# Load in list of ignored barcodes
if os.path.isfile(ignored_for_output_filename):
with open(ignored_for_output_filename, 'r') as f:
previously_ignored = set([line.rstrip().split('\t')[0] for line in f])
# Load the metrics data into memory
# (It should be fairly small, this is fast and safe)
existing_metrics_data = {}
with open(metrics_output_filename, 'r') as f:
existing_metrics_data = dict((line.partition('\t')[0], line) for line in f if line[-1]=='\n')
# Quantification data could be large, read it line by line and output it back for barcodes that have a matching metrics line.
with open(counts_output_filename, 'r') as in_counts, \
open(counts_output_filename+'.tmp', 'w') as tmp_counts, \
open(metrics_output_filename+'.tmp', 'w') as tmp_metrics:
for line in in_counts:
# The first worker is reponsible for written the header.
# Make sure we carry that over
if (not header_written) and (worker_index==0):
tmp_counts.write(line)
tmp_metrics.write(existing_metrics_data['Barcode'])
header_written = True
continue
# This line has incomplete output, skip it.
# (This can only happen with the last line)
if line[-1] != '\n':
continue
barcode = line.partition('\t')[0]
# Skip barcode if we don't have existing metrics data
if barcode not in existing_metrics_data:
continue
# Check if we BAM required BAM files exist
barcode_genomic_bam_filename = get_barcode_genomic_bam_filename(barcode)
bam_files_required_and_present = no_bam or (os.path.isfile(barcode_genomic_bam_filename) and os.path.isfile(barcode_genomic_bam_filename+'.bai'))
if not bam_files_required_and_present:
continue
# This passed all the required checks, write the line to the temporary output files
tmp_counts.write(line)
tmp_metrics.write(existing_metrics_data[barcode])
succesfully_previously_quantified.add(barcode)
shutil.move(counts_output_filename+'.tmp', counts_output_filename)
shutil.move(metrics_output_filename+'.tmp', metrics_output_filename)
# For any 'already quantified' barcode, make sure we also copy over the ambiguity data
with open(ambig_counts_output_filename, 'r') as in_f, \
open(ambig_counts_output_filename+'.tmp', 'w') as tmp_f:
f_first_line = (worker_index == 0)
for line in in_f:
if f_first_line:
tmp_f.write(line)
f_first_line = False
continue
if (line.partition('\t')[0] in succesfully_previously_quantified) and (line[-1]=='\n'):
tmp_f.write(line)
shutil.move(ambig_counts_output_filename+'.tmp', ambig_counts_output_filename)
with open(ambig_partners_output_filename, 'r') as in_f, \
open(ambig_partners_output_filename+'.tmp', 'w') as tmp_f:
for line in in_f:
if (line.partition('\t')[0] in succesfully_previously_quantified) and (line[-1]=='\n'):
tmp_f.write(line)
shutil.move(ambig_partners_output_filename+'.tmp', ambig_partners_output_filename)
barcodes_to_quantify = [bc for bc in barcodes_for_this_worker if (bc not in succesfully_previously_quantified and bc not in previously_ignored)]
print_to_stderr("""[%s] This worker assigned %d out of %d total barcodes.""" % (self.name, len(barcodes_for_this_worker), len(sorted_barcode_names)))
if len(barcodes_for_this_worker)-len(barcodes_to_quantify) > 0:
print_to_stderr(""" %d previously quantified, %d previously ignored, %d left for this run.""" % (len(succesfully_previously_quantified), len(previously_ignored), len(barcodes_to_quantify)))
print_to_stderr(('{0:<14.12}'.format('Prefix') if analysis_prefix else '') + '{0:<14.12}{1:<9}'.format("Library", "Barcode"), False)
print_to_stderr("{0:<8s}{1:<8s}{2:<10s}".format("Reads", "Counts", "Ambigs"))
for barcode in barcodes_to_quantify:
self.quantify_expression_for_barcode(barcode,
counts_output_filename, metrics_output_filename,
ambig_counts_output_filename, ambig_partners_output_filename,
no_bam=no_bam, write_header=(not header_written) and (worker_index==0), analysis_prefix=analysis_prefix,
min_counts = min_counts, run_filter=run_filter)
header_written = True
print_to_stderr("Per barcode quantification completed.")
if no_bam:
return
#Gather list of barcodes with output from the metrics file
genomic_bams = []
with open(metrics_output_filename, 'r') as f:
for line in f:
bc = line.partition('\t')[0]
if bc == 'Barcode': #This is the line in the header
continue
genomic_bams.append(get_barcode_genomic_bam_filename(bc))
print_to_stderr("Merging BAM output.")
try:
subprocess.check_output([self.project.paths.samtools, 'merge', '-f', merged_bam_filename]+genomic_bams, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:400])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools merge === ")
print_to_stderr("Indexing merged BAM output.")
try:
subprocess.check_output([self.project.paths.samtools, 'index', merged_bam_filename], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:400])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools index === ")
print(genomic_bams)
for filename in genomic_bams:
os.remove(filename)
os.remove(filename + '.bai')
def quantify_expression_for_barcode(self, barcode, counts_output_filename, metrics_output_filename,
ambig_counts_output_filename, ambig_partners_output_filename,
min_counts=0, analysis_prefix='', no_bam=False, write_header=False, run_filter=[]):
print_to_stderr(('{0:<14.12}'.format(analysis_prefix) if analysis_prefix else '') + '{0:<14.12}{1:<9}'.format(self.name, barcode), False)
unaligned_reads_output = os.path.join(self.paths.quant_dir, '%s%s.unaligned.fastq' % (analysis_prefix,barcode))
aligned_bam = os.path.join(self.paths.quant_dir, '%s%s.aligned.bam' % (analysis_prefix,barcode))
# Bowtie command
bowtie_cmd = [self.project.paths.bowtie, self.project.paths.bowtie_index, '-q', '-',
'-p', '1', '-a', '--best', '--strata', '--chunkmbs', '1000', '--norc', '--sam',
'-shmem', #should sometimes reduce memory usage...?
'-m', str(self.project.parameters['bowtie_arguments']['m']),
'-n', str(self.project.parameters['bowtie_arguments']['n']),
'-l', str(self.project.parameters['bowtie_arguments']['l']),
'-e', str(self.project.parameters['bowtie_arguments']['e']),
]
if self.project.parameters['output_arguments']['output_unaligned_reads_to_other_fastq']:
bowtie_cmd += ['--un', unaligned_reads_output]
# Quantification command
script_dir = os.path.dirname(os.path.realpath(__file__))
quant_cmd = [self.project.paths.python, self.project.paths.quantify_umifm_from_alignments_py,
'-m', str(self.project.parameters['umi_quantification_arguments']['m']),
'-u', str(self.project.parameters['umi_quantification_arguments']['u']),
'-d', str(self.project.parameters['umi_quantification_arguments']['d']),
'--min_non_polyA', str(self.project.parameters['umi_quantification_arguments']['min_non_polyA']),
'--library', str(self.name),
'--barcode', str(barcode),
'--counts', counts_output_filename,
'--metrics', metrics_output_filename,
'--ambigs', ambig_counts_output_filename,
'--ambig-partners', ambig_partners_output_filename,
'--min-counts', str(min_counts),
]
if not no_bam:
quant_cmd += ['--bam', aligned_bam]
if write_header:
quant_cmd += ['--write-header']
if self.project.parameters['umi_quantification_arguments']['split-ambigs']:
quant_cmd.append('--split-ambig')
if self.project.parameters['output_arguments']['filter_alignments_to_softmasked_regions']:
quant_cmd += ['--soft-masked-regions', self.project.paths.bowtie_index + '.soft_masked_regions.pickle']
# Spawn processes
p1 = subprocess.Popen(bowtie_cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
p2 = subprocess.Popen(quant_cmd, stdin=p1.stdout, stderr=subprocess.PIPE)
for line in self.get_reads_for_barcode(barcode, run_filter=run_filter):
try:
p1.stdin.write(line)
except IOError as e:
print_to_stderr('\n')
print_to_stderr(p1.stderr.read())
raise Exception('\n === Error on piping data to bowtie ===')
p1.stdin.close()
if p1.wait() != 0:
print_to_stderr('\n')
print_to_stderr(p1.stderr.read())
raise Exception('\n === Error on bowtie ===')
if p2.wait() != 0:
print_to_stderr(p2.stderr.read())
raise Exception('\n === Error on Quantification Script ===')
print_to_stderr(p2.stderr.read(), False)
if no_bam:
# We are done here
return False
if not os.path.isfile(aligned_bam):
raise Exception("\n === No aligned bam was output for barcode %s ===" % barcode)
genomic_bam = os.path.join(self.paths.quant_dir, '%s%s.genomic.bam' % (analysis_prefix,barcode))
sorted_bam = os.path.join(self.paths.quant_dir, '%s%s.genomic.sorted.bam' % (analysis_prefix,barcode))
try:
subprocess.check_output([self.project.paths.rsem_tbam2gbam, self.project.paths.bowtie_index, aligned_bam, genomic_bam], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:100])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in rsem-tbam2gbam === ")
try:
subprocess.check_output([self.project.paths.samtools, 'sort', '-o', sorted_bam, genomic_bam], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:100])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools sort === ")
try:
subprocess.check_output([self.project.paths.samtools, 'index', sorted_bam], stderr=subprocess.STDOUT)
except subprocess.CalledProcessError, err:
print_to_stderr(" CMD: %s" % str(err.cmd)[:100])
print_to_stderr(" stdout/stderr:")
print_to_stderr(err.output)
raise Exception(" === Error in samtools index === ")
os.remove(aligned_bam)
os.remove(genomic_bam)
return True
def aggregate_counts(self, analysis_prefix='', process_ambiguity_data=False):
if analysis_prefix:
analysis_prefix = analysis_prefix + '.'
quant_output_files = [fn[len(analysis_prefix):].split('.')[0] for fn in os.listdir(self.paths.quant_dir) if ('worker' in fn and fn[:len(analysis_prefix)]==analysis_prefix)]
else:
quant_output_files = [fn.split('.')[0] for fn in os.listdir(self.paths.quant_dir) if (fn[:6]=='worker')]
worker_names = [w[6:] for w in quant_output_files]
worker_indices = set(int(w.split('_')[0]) for w in worker_names)
total_workers = set(int(w.split('_')[1]) for w in worker_names)
if len(total_workers) > 1:
raise Exception("""Quantification for library %s, prefix '%s' was run with different numbers of total_workers.""" % (self.name, analysis_prefix))
total_workers = list(total_workers)[0]
missing_workers = []
for i in range(total_workers):
if i not in worker_indices:
missing_workers.append(i)
if missing_workers:
missing_workers = ','.join([str(i) for i in sorted(missing_workers)])
raise Exception("""Output from workers %s (total %d) is missing. """ % (missing_workers, total_workers))
aggregated_counts_filename = os.path.join(self.project.project_dir, self.name, self.name+'.'+analysis_prefix+'counts.tsv')
aggregated_quant_metrics_filename = os.path.join(self.project.project_dir, self.name, self.name+'.'+analysis_prefix+'quant_metrics.tsv')
aggregated_ignored_filename = os.path.join(self.project.project_dir, self.name, self.name+'.'+analysis_prefix+'ignored_barcodes.txt')
aggregated_bam_output = os.path.join(self.project.project_dir, self.name, self.name+'.'+analysis_prefix+'bam')
aggregated_ambig_counts_filename = os.path.join(self.project.project_dir, self.name, self.name+'.'+analysis_prefix+'ambig_counts.tsv')
aggregated_ambig_partners_filename = os.path.join(self.project.project_dir, self.name, self.name+'.'+analysis_prefix+'ambig_partners.tsv')
agg_counts = open(aggregated_counts_filename, mode='w')
agg_metrics = open(aggregated_quant_metrics_filename, mode='w')
agg_ignored = open(aggregated_ignored_filename, mode='w')
if process_ambiguity_data:
agg_ambigs = open(aggregated_ambig_counts_filename, mode='w')
agg_ambig_partners = open(aggregated_ambig_partners_filename, mode='w')
end_of_counts_header = 0
end_of_metrics_header = 0
end_of_ambigs_header = 0
print_to_stderr(' Concatenating output from all workers.')
for worker_index in range(total_workers):
counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.counts.tsv' % (analysis_prefix, worker_index, total_workers))
ambig_counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.counts.tsv' % (analysis_prefix, worker_index, total_workers))
ambig_partners_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.partners' % (analysis_prefix, worker_index, total_workers))
metrics_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.metrics.tsv' % (analysis_prefix, worker_index, total_workers))
ignored_for_output_filename = counts_output_filename+'.ignored'
# Counts
with open(counts_output_filename, 'r') as f:
shutil.copyfileobj(f, agg_counts)
# Metrics
with open(metrics_output_filename, 'r') as f:
shutil.copyfileobj(f, agg_metrics)
# Ignored
if os.path.isfile(counts_output_filename+'.ignored'):
with open(counts_output_filename+'.ignored', 'r') as f:
shutil.copyfileobj(f, agg_ignored)
if process_ambiguity_data:
with open(ambig_counts_output_filename, 'r') as f:
shutil.copyfileobj(f, agg_ambigs)
with open(ambig_partners_output_filename, 'r') as f:
shutil.copyfileobj(f, agg_ambig_partners)
print_to_stderr(' GZIPping concatenated output.')
agg_counts.close()
subprocess.Popen(['gzip', '-f', aggregated_counts_filename]).wait()
agg_metrics.close()
subprocess.Popen(['gzip', '-f', aggregated_quant_metrics_filename]).wait()
print_to_stderr('Aggregation completed in %s.gz' % aggregated_counts_filename)
if process_ambiguity_data:
agg_ambigs.close()
subprocess.Popen(['gzip', '-f', aggregated_ambig_counts_filename]).wait()
agg_ambig_partners.close()
subprocess.Popen(['gzip', '-f', aggregated_ambig_partners_filename]).wait()
target_bams = [os.path.join(self.paths.quant_dir, '%sworker%d_%d.bam'% (analysis_prefix, worker_index, total_workers)) for worker_index in range(total_workers)]
target_bams = [t for t in target_bams if os.path.isfile(t)]
if target_bams:
print_to_stderr(' Merging BAM files.')
p1 = subprocess.Popen([self.project.paths.samtools, 'merge', '-f', aggregated_bam_output]+target_bams, stderr=subprocess.PIPE, stdout=subprocess.PIPE)
if p1.wait() == 0:
print_to_stderr(' Indexing merged BAM file.')
p2 = subprocess.Popen([self.project.paths.samtools, 'index', aggregated_bam_output], stderr=subprocess.PIPE, stdout=subprocess.PIPE)
if p2.wait() == 0:
for filename in target_bams:
os.remove(filename)
os.remove(filename + '.bai')
else:
print_to_stderr(" === Error in samtools index ===")
print_to_stderr(p2.stderr.read())
else:
print_to_stderr(" === Error in samtools merge ===")
print_to_stderr(p1.stderr.read())
# print_to_stderr('Deleting per-worker counts files.')
# for worker_index in range(total_workers):
# counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.counts.tsv' % (analysis_prefix, worker_index, total_workers))
# os.remove(counts_output_filename)
# ambig_counts_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.counts.tsv' % (analysis_prefix, worker_index, total_workers))
# os.remove(ambig_counts_output_filename)
# ambig_partners_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.ambig.partners' % (analysis_prefix, worker_index, total_workers))
# os.remove(ambig_partners_output_filename)
# metrics_output_filename = os.path.join(self.paths.quant_dir, '%sworker%d_%d.metrics.tsv' % (analysis_prefix, worker_index, total_workers))
# os.remove(metrics_output_filename)
# ignored_for_output_filename = counts_output_filename+'.ignored'
# os.remove(ignored_for_output_filename)
class LibrarySequencingPart():
def __init__(self, filtered_fastq_filename=None, project=None, run_name='', library_name='', part_name=''):
self.project = project
self.run_name = run_name
self.part_name = part_name
self.library_name = library_name
self.filtered_fastq_filename = filtered_fastq_filename
self.barcode_counts_pickle_filename = filtered_fastq_filename + '.counts.pickle'
self.filtering_metrics_filename = '.'.join(filtered_fastq_filename.split('.')[:-1]) + 'metrics.yaml'
self.sorted_gzipped_fastq_filename = filtered_fastq_filename + '.sorted.fastq.gz'
self.sorted_gzipped_fastq_index_filename = filtered_fastq_filename + '.sorted.fastq.gz.index.pickle'
@property
def is_filtered(self):
if not hasattr(self, '_is_filtered'):
self._is_filtered = os.path.exists(self.filtered_fastq_filename) and os.path.exists(self.barcode_counts_pickle_filename)
return self._is_filtered
@property
def is_sorted(self):
if not hasattr(self, '_is_sorted'):
self._is_sorted = os.path.exists(self.sorted_gzipped_fastq_filename) and os.path.exists(self.sorted_gzipped_fastq_index_filename)
return self._is_sorted
@property
def part_barcode_counts(self):
if not hasattr(self, '_part_barcode_counts'):
with open(self.barcode_counts_pickle_filename, 'r') as f:
self._part_barcode_counts = pickle.load(f)
return self._part_barcode_counts
@property
def sorted_index(self):
if not hasattr(self, '_sorted_index'):
with open(self.sorted_gzipped_fastq_index_filename, 'r') as f:
self._sorted_index = pickle.load(f)
return self._sorted_index
def contains_library_in_query(self, query_libraries):
return self.library_name in query_libraries
def sort_reads_by_barcode(self, abundant_barcodes={}):
sorted_barcodes = [j for j,v in sorted(abundant_barcodes.items(), key=lambda i:-i[1][1])]
sorted_barcodes = [j for j in sorted_barcodes if j in self.part_barcode_counts]
barcode_buffers = {}
barcode_gzippers = {}
for bc in sorted_barcodes + ['ignored']:
barcode_buffers[bc] = BytesIO()
barcode_gzippers[bc] = gzip.GzipFile(fileobj=barcode_buffers[bc], mode='wb')
total_processed_reads = 0
total_ignored_reads = 0
bcs_with_data = set()
bcs_with_tmp_data = set()
barcode_tmp_filename = lambda bc: '%s.%s.tmp.gz' % (self.sorted_gzipped_fastq_filename, bc)
total_reads = sum(self.part_barcode_counts.values())
print_to_stderr('Sorting %d reads from %d barcodes above absolute minimum threshold.' % (total_reads, len(abundant_barcodes)))
with open(self.filtered_fastq_filename, 'r') as input_fastq:
for name, seq, qual in from_fastq(input_fastq):
total_processed_reads += 1
bc = name.split(':')[0]
if total_processed_reads%1000000 == 0:
print_to_stderr('Read in %.02f percent of all reads (%d)' % (100.*total_processed_reads/total_reads, total_processed_reads))
if bc in abundant_barcodes:
barcode_gzippers[bc].write(to_fastq(name, seq, qual))
bcs_with_data.add(bc)
else:
total_ignored_reads += 1
barcode_gzippers['ignored'].write(to_fastq(name, seq, qual))
bcs_with_data.add('ignored')
sorted_output_index = {}
with open(self.sorted_gzipped_fastq_filename, 'wb') as sorted_output:
for original_bc in sorted_barcodes + ['ignored']:
if original_bc != 'ignored':
new_bc_name = abundant_barcodes[original_bc][0]
barcode_reads_count = self.part_barcode_counts[original_bc]
else:
new_bc_name = 'ignored'
barcode_reads_count = total_ignored_reads
start_pos = sorted_output.tell()
barcode_gzippers[original_bc].close()
if original_bc in bcs_with_data:
barcode_buffers[original_bc].seek(0)
shutil.copyfileobj(barcode_buffers[original_bc], sorted_output)
barcode_buffers[original_bc].close()
end_pos = sorted_output.tell()
if end_pos > start_pos:
sorted_output_index[new_bc_name] = (original_bc, start_pos, end_pos, end_pos-start_pos, barcode_reads_count)
with open(self.sorted_gzipped_fastq_index_filename, 'w') as f:
pickle.dump(sorted_output_index, f)
def get_reads_for_barcode(self, barcode):
if barcode not in self.sorted_index:
raise StopIteration
original_barcode, start_byte_offset, end_byte_offset, byte_length, barcode_reads = self.sorted_index[barcode]
with open(self.sorted_gzipped_fastq_filename, 'rb') as sorted_output:
sorted_output.seek(start_byte_offset)
byte_buffer = BytesIO(sorted_output.read(byte_length))
ungzipper = gzip.GzipFile(fileobj=byte_buffer, mode='rb')
while True:
yield next(ungzipper)
@contextmanager
def trimmomatic_and_low_complexity_filter_process(self):
"""
We start 3 processes that are connected with Unix pipes.
Process 1 - Trimmomatic. Doesn't support stdin/stdout, so we instead use named pipes (FIFOs). It reads from FIFO1, and writes to FIFO2.
Process 2 - In line complexity filter, a python script. It reads from FIFO2 (Trimmomatic output) and writes to the ouput file.
Process 3 - Indexer that counts the number of reads for every barcode. This reads from stdin, writes the reads to stdout and writes the index as a pickle to stderr.
When these are done, we start another process to count the results on the FastQ file.
"""
filtered_dir = os.path.dirname(self.filtered_fastq_filename) #We will use the same directory for creating temporary FIFOs, assuming we have write access.
self.filtering_statistics_counter = defaultdict(int)
with FIFO(dir=filtered_dir) as fifo2, open(self.filtered_fastq_filename, 'w') as filtered_fastq_file, open(self.filtered_fastq_filename+'.counts.pickle', 'w') as filtered_index_file:
low_complexity_filter_cmd = [self.project.paths.python, self.project.paths.trim_polyA_and_filter_low_complexity_reads_py,
'-input', fifo2.filename,
'--min-post-trim-length', self.project.parameters['trimmomatic_arguments']['MINLEN'],
'--max-low-complexity-fraction', str(self.project.parameters['low_complexity_filter_arguments']['max_low_complexity_fraction']),
]
counter_cmd = [self.project.paths.python, self.project.paths.count_barcode_distribution_py]
p2 = subprocess.Popen(low_complexity_filter_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
p3 = subprocess.Popen(counter_cmd, stdin=p2.stdout, stdout=filtered_fastq_file, stderr=filtered_index_file)
with FIFO(dir=filtered_dir) as fifo1:
trimmomatic_cmd = [self.project.paths.java, '-Xmx500m', '-jar', self.project.paths.trimmomatic_jar,
'SE', '-threads', "1", '-phred33', fifo1.filename, fifo2.filename]
for arg in self.project.parameters['trimmomatic_arguments']['argument_order']:
val = self.project.parameters['trimmomatic_arguments'][arg]
trimmomatic_cmd.append('%s:%s' % (arg, val))
p1 = subprocess.Popen(trimmomatic_cmd, stderr=subprocess.PIPE)
fifo1_filehandle = open(fifo1.filename, 'w')
yield fifo1_filehandle
fifo1_filehandle.close()
trimmomatic_stderr = p1.stderr.read().splitlines()
if trimmomatic_stderr[2] != 'TrimmomaticSE: Completed successfully':
raise Exception('Trimmomatic did not complete succesfully on %s' % filtered_filename)
trimmomatic_metrics = trimmomatic_stderr[1].split()
# ['Input', 'Reads:', #READS, 'Surviving:', #SURVIVING, (%SURVIVING), 'Dropped:', #DROPPED, (%DROPPED)]
trimmomatic_metrics = {'input' : trimmomatic_metrics[2], 'output': trimmomatic_metrics[4], 'dropped': trimmomatic_metrics[7]}
p1.wait()
complexity_filter_metrics = pickle.load(p2.stderr)
p2.wait()
p3.wait()
filtering_metrics = {
'read_structure' : dict(self.filtering_statistics_counter),
'trimmomatic' : trimmomatic_metrics,
'complexity_filter': complexity_filter_metrics,
}
with open(self.filtering_metrics_filename, 'w') as f:
yaml.dump(dict(filtering_metrics), f, default_flow_style=False)
class V1V2Filtering(LibrarySequencingPart):
def __init__(self, bioread_filename=None, metaread_filename=None, *args, **kwargs):
self.bioread_filename = bioread_filename
self.metaread_filename = metaread_filename
LibrarySequencingPart.__init__(self, *args, **kwargs)
def filter_and_count_reads(self):
"""
Input the two raw FastQ files
Output:
- A single fastQ file that uses the read name to store the barcoding information
- A pickle of the number of reads originating from each barcode
"""
# Relevant paths
r1_filename, r2_filename = self.metaread_filename, self.bioread_filename
#Get barcode neighborhoods
bc1s = self.project.gel_barcode1_revcomp_list_neighborhood
bc2s = self.project.gel_barcode2_revcomp_list_neighborhood
# This starts a Trimmomatic process, a low complexity filter process, and will
# upon closing, start the barcode distribution counting process.
last_ping = time.time()
ping_every_n_reads = 1000000
ping_header = "{0:>12}{1:>16}{2:>12}{3:>10}{4:>10}{5:>10}{6:>10}{7:>10}{8:>10}{9:>10}"
ping_header = ping_header.format("Total Reads", "", "Valid Reads", "W1 in R2", "Empty", "No W1", "No polyT", "No BC1", "No BC2", "No UMI")
ping_template = "{total:12d} {rate:5.1f} sec/M {Valid:12.1%}{W1_in_R2:10.1%}{empty_read:10.1%}{No_W1:10.1%}{No_polyT:10.1%}{BC1:10.1%}{BC2:10.1%}{Umi_error:10.1%}"
def print_ping_to_log(last_ping):
sec_per_mil = (time.time()-last_ping)/(ping_every_n_reads/10**6) if last_ping else 0.0
total = self.filtering_statistics_counter['Total']
if total > 0:
ping_format_data = {k: float(self.filtering_statistics_counter[k])/total for k in ['Valid', 'W1_in_R2', 'empty_read', 'No_W1', 'No_polyT', 'BC1', 'BC2', 'Umi_error']}
print_to_stderr(ping_template.format(total=total, rate=sec_per_mil, **ping_format_data))
with self.trimmomatic_and_low_complexity_filter_process() as trim_process:
#Iterate over the weaved reads
for r_name, r1_seq, r1_qual, r2_seq, r2_qual in self._weave_fastqs(r1_filename, r2_filename):
# Check if they should be kept
keep, result = self._process_reads(r1_seq, r2_seq, valid_bc1s=bc1s, valid_bc2s=bc2s)
# Write the the reads worth keeping
if keep:
bc, umi = result
trim_process.write(to_fastq_lines(bc, umi, r2_seq, r2_qual, r_name))
self.filtering_statistics_counter['Valid'] += 1
else:
self.filtering_statistics_counter[result] += 1
# Track speed per M reads
self.filtering_statistics_counter['Total'] += 1
if self.filtering_statistics_counter['Total']%(10*ping_every_n_reads) == 1:
print_to_stderr(ping_header)
if self.filtering_statistics_counter['Total']%ping_every_n_reads == 0:
print_ping_to_log(last_ping)
last_ping = time.time()
print_ping_to_log(False)
print_to_stderr(self.filtering_statistics_counter)
def _weave_fastqs(self, r1_fastq, r2_fastq):
"""
Merge 2 FastQ files by returning paired reads for each.
Returns only R1_seq, R2_seq and R2_qual.
"""
is_gz_compressed = False
is_bz_compressed = False
if r1_fastq.split('.')[-1] == 'gz' and r2_fastq.split('.')[-1] == 'gz':
is_gz_compressed = True
#Added bz2 support VS
if r1_fastq.split('.')[-1] == 'bz2' and r2_fastq.split('.')[-1] == 'bz2':
is_bz_compressed = True
# Decompress Gzips using subprocesses because python gzip is incredibly slow.
if is_gz_compressed:
r1_gunzip = subprocess.Popen("gzip --stdout -d %s" % (r1_fastq), shell=True, stdout=subprocess.PIPE)
r1_stream = r1_gunzip.stdout
r2_gunzip = subprocess.Popen("gzip --stdout -d %s" % (r2_fastq), shell=True, stdout=subprocess.PIPE)
r2_stream = r2_gunzip.stdout
elif is_bz_compressed:
r1_bunzip = subprocess.Popen("bzcat %s" % (r1_fastq), shell=True, stdout=subprocess.PIPE)
r1_stream = r1_bunzip.stdout
r2_bunzip = subprocess.Popen("bzcat %s" % (r2_fastq), shell=True, stdout=subprocess.PIPE)
r2_stream = r2_bunzip.stdout
else:
r1_stream = open(r1_fastq, 'r')
r2_stream = open(r2_fastq, 'r')
while True:
#Read 4 lines from each FastQ
name = next(r1_stream).rstrip()[1:].split()[0] #Read name
r1_seq = next(r1_stream).rstrip() #Read seq
next(r1_stream) #+ line
r1_qual = next(r1_stream).rstrip() #Read qual
next(r2_stream) #Read name
r2_seq = next(r2_stream).rstrip() #Read seq
next(r2_stream) #+ line
r2_qual = next(r2_stream).rstrip() #Read qual
# changed to allow for empty reads (caused by adapter trimming)
if name:
yield name, r1_seq, r1_qual, r2_seq, r2_qual
else:
# if not r1_seq or not r2_seq:
break
r1_stream.close()
r2_stream.close()
def _process_reads(self, name, read, valid_bc1s={}, valid_bc2s={}):
"""
Returns either:
True, (barcode, umi)
(if read passes filter)
False, name of filter that failed
(for stats collection)
R1 anatomy: BBBBBBBB[BBB]WWWWWWWWWWWWWWWWWWWWWWCCCCCCCCUUUUUUTTTTTTTTTT______________
B = Barcode1, can be 8, 9, 10 or 11 bases long.
W = 'W1' sequence, specified below
C = Barcode2, always 8 bases
U = UMI, always 6 bases
T = Beginning of polyT tail.
_ = Either sequencing survives across the polyT tail, or signal starts dropping off
(and start being anything, likely with poor quality)
"""
minimal_polyT_len_on_R1 = 7
hamming_threshold_for_W1_matching = 3
w1 = "GAGTGATTGCTTGTGACGCCTT"
rev_w1 = "AAGGCGTCACAAGCAATCACTC" #Hard-code so we don't recompute on every one of millions of calls
# If R2 contains rev_W1, this is almost certainly empty library
if rev_w1 in read:
return False, 'W1_in_R2'
# # With reads sufficiently long, we will often see a PolyA sequence in R2.
# if polyA in read:
# return False, 'PolyA_in_R2'
# Check for polyT signal at 3' end.
# 44 is the length of BC1+W1+BC2+UMI, given the longest PolyT
#BC1: 8-11 bases
#W1 : 22 bases
#BC2: 8 bases
#UMI: 6 bases
# check for empty reads (due to adapter trimming)
if not read:
return False, 'empty_read'
#Check for W1 adapter
#Allow for up to hamming_threshold errors
if w1 in name:
w1_pos = name.find(w1)
if not 7 < w1_pos < 12:
return False, 'No_W1'
else:
#Try to find W1 adapter at start positions 8-11
#by checking hamming distance to W1.
for w1_pos in range(8, 12):
if string_hamming_distance(w1, name[w1_pos:w1_pos+22]) <= hamming_threshold_for_W1_matching:
break
else:
return False, 'No_W1'
bc2_pos=w1_pos+22
umi_pos=bc2_pos+8
polyTpos=umi_pos+6
expected_poly_t = name[polyTpos:polyTpos+minimal_polyT_len_on_R1]
if string_hamming_distance(expected_poly_t, 'T'*minimal_polyT_len_on_R1) > 3:
return False, 'No_polyT'
bc1 = str(name[:w1_pos])
bc2 = str(name[bc2_pos:umi_pos])
umi = str(name[umi_pos:umi_pos+6])
#Validate barcode (and try to correct when there is no ambiguity)
if valid_bc1s and valid_bc2s:
# Check if BC1 and BC2 can be mapped to expected barcodes
if bc1 in valid_bc1s:
# BC1 might be a neighboring BC, rather than a valid BC itself.
bc1 = valid_bc1s[bc1]
else:
return False, 'BC1'
if bc2 in valid_bc2s:
bc2 = valid_bc2s[bc2]
else:
return False, 'BC2'
if 'N' in umi:
return False, 'UMI_error'
bc = '%s-%s'%(bc1, bc2)
return True, (bc, umi)
class V3Demultiplexer():
def __init__(self, library_indices, project=None, part_filename="", input_filename="", run_name="", part_name="", run_version_details="v3"):
self.run_version_details = run_version_details
self.input_filename = input_filename
self.project = project
self.run_name = run_name
self.part_name = part_name
self.libraries = {}
for lib in library_indices:
lib_index = lib['library_index']
lib_name = lib['library_name']
library_part_filename = part_filename.format(library_name=lib_name, library_index=lib_index)
self.libraries[lib_index] = LibrarySequencingPart(filtered_fastq_filename=library_part_filename, project=project, run_name=run_name, library_name=lib_name, part_name=part_name)
def _weave_fastqs(self, fastqs):
last_extension = [fn.split('.')[-1] for fn in fastqs]
if all(ext == 'gz' for ext in last_extension):
processes = [subprocess.Popen("gzip --stdout -d %s" % (fn), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for fn in fastqs]
streams = [r.stdout for r in processes]
elif all(ext == 'bz2' for ext in last_extension):
processes = [subprocess.Popen("bzcat %s" % (fn), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) for fn in fastqs]
streams = [r.stdout for r in processes]
elif all(ext == 'fastq' for ext in last_extension):
streams = [open(fn, 'r') for fn in fastqs]
else:
raise("ERROR: Different files are compressed differently. Check input.")
while True:
names = [next(s)[:-1].split()[0] for s in streams]
seqs = [next(s)[:-1] for s in streams]
blanks = [next(s)[:-1] for s in streams]
quals = [next(s)[:-1] for s in streams]
assert all(name==names[0] for name in names)
yield names[0], seqs, quals
for s in streams:
s.close()
def _process_reads(self, name, seqs, quals, valid_bc1s={}, valid_bc2s={}, valid_libs={}):
"""
Returns either:
True, (barcode, umi)
(if read passes filter)
False, name of filter that failed
(for stats collection)
"""
r1, r2, r3, r4 = seqs
if self.run_version_details=='v3-miseq':
r2 = rev_comp(r2)
r4 = rev_comp(r4)
if r3 in valid_libs:
lib_index = valid_libs[r3]
else:
return False, r3, 'Invalid_library_index'
if r2 in valid_bc1s:
bc1 = valid_bc1s[r2]
else:
return False, lib_index, 'Invalid_BC1'
orig_bc2 = r4[:8]
umi = r4[8:8+6]
polyA = r4[8+6:]
if orig_bc2 in valid_bc2s:
bc2 = valid_bc2s[orig_bc2]
else:
return False, lib_index, 'Invalid_BC2'
if 'N' in umi:
return False, lib_index, 'UMI_contains_N'
final_bc = '%s-%s' % (bc1, bc2)
return True, lib_index, (final_bc, umi)
def filter_and_count_reads(self):
# Prepare error corrected index sets
self.sequence_to_index_mapping = {}
libs = self.libraries.keys()
self.sequence_to_index_mapping = dict(zip(libs, libs))
index_neighborhoods = [set(seq_neighborhood(lib, 1)) for lib in libs]
for lib, clibs in zip(libs, index_neighborhoods):
# Quick check that error-correction maps to a single index
for clib in clibs:
if sum(clib in hood for hood in index_neighborhoods)==1:
self.sequence_to_index_mapping[clib] = lib
# Prepare error corrected barcode sets
error_corrected_barcodes = self.project.gel_barcode2_list_neighborhood
error_corrected_rev_compl_barcodes = self.project.gel_barcode2_revcomp_list_neighborhood
# Open up our context managers
manager_order = [] #It's imperative to exit managers the opposite order than we open them!
trim_processes = {}
trim_processes_managers = {}
for lib in self.libraries.keys():
manager_order.append(lib)
trim_processes_managers[lib] = self.libraries[lib].trimmomatic_and_low_complexity_filter_process()
trim_processes[lib] = trim_processes_managers[lib].__enter__()
overall_filtering_statistics = defaultdict(int)
# Paths for the 4 expected FastQs
input_fastqs = []
for r in ['R1', 'R2', 'R3', 'R4']:
input_fastqs.append(self.input_filename.format(read=r))
last_ping = time.time()
ping_every_n_reads = 1000000
ping_header = "{0:>12}{1:>16}{2:>12}{3:>10}{4:>10}{5:>10}{6:>10} |" + ''.join("{%d:>12.10}"%i for i in range(7,7+len(manager_order)))
ping_header = ping_header.format("Total Reads", "", "Valid Reads", "No index", "No BC1", "No BC2", "No UMI", *[self.libraries[k].library_name for k in manager_order])
ping_template = "{total:12d} {rate:5.1f} sec/M {Valid:12.1%}{Invalid_library_index:10.1%}{Invalid_BC1:10.1%}{Invalid_BC2:10.1%}{UMI_contains_N:10.1%} |{"+":>12.1%}{".join(manager_order)+":>12.1%}"
def print_ping_to_log(last_ping):
sec_per_mil = (time.time() - last_ping)/(float(ping_every_n_reads)/10**6) if last_ping else 0
total = overall_filtering_statistics['Total']
ping_format_data = {k: float(overall_filtering_statistics[k])/total for k in ['Valid', 'Invalid_library_index', 'Invalid_BC1', 'Invalid_BC2', 'UMI_contains_N']}
if overall_filtering_statistics['Valid'] > 0:
ping_format_data.update({k: float(self.libraries[k].filtering_statistics_counter['Valid'])/overall_filtering_statistics['Valid'] for k in manager_order})
print_to_stderr(ping_template.format(total=total, rate=sec_per_mil, **ping_format_data))
common__ = defaultdict(int)
print_to_stderr('Filtering %s, file %s' % (self.run_name, self.input_filename))
for r_name, seqs, quals in self._weave_fastqs(input_fastqs):
# Python 3 compatibility in mind!
seqs = [s.decode('utf-8') for s in seqs]
keep, lib_index, result = self._process_reads(r_name, seqs, quals,
error_corrected_barcodes, error_corrected_rev_compl_barcodes,
self.sequence_to_index_mapping)
common__[seqs[1]] += 1
if keep:
bc, umi = result
bio_read = seqs[0]
bio_qual = quals[0]
trim_processes[lib_index].write(to_fastq_lines(bc, umi, bio_read, bio_qual, r_name[1:]))
self.libraries[lib_index].filtering_statistics_counter['Valid'] += 1
self.libraries[lib_index].filtering_statistics_counter['Total'] += 1
overall_filtering_statistics['Valid'] += 1
else:
if result != 'Invalid_library_index':
self.libraries[lib_index].filtering_statistics_counter[result] += 1
self.libraries[lib_index].filtering_statistics_counter['Total'] += 1
overall_filtering_statistics[result] += 1
# Track speed per M reads
overall_filtering_statistics['Total'] += 1
if overall_filtering_statistics['Total']%(ping_every_n_reads*10)==1:
print_to_stderr(ping_header)
if overall_filtering_statistics['Total']%ping_every_n_reads == 0:
print_ping_to_log(last_ping)
last_ping = time.time()
print_ping_to_log(False)
# Close up the context managers
for lib in manager_order[::-1]:
trim_processes_managers[lib].__exit__(None, None, None)
def contains_library_in_query(self, query_libraries):
for lib in self.libraries.values():
if lib.contains_library_in_query(query_libraries):
return True
return False
if __name__=="__main__":
import sys, argparse
parser = argparse.ArgumentParser()
parser.add_argument('project', type=argparse.FileType('r'), help='Project YAML File.')
parser.add_argument('-l', '--libraries', type=str, help='[all] Library name(s) to work on. If blank, will iterate over all libraries in project.', nargs='?', default='')
parser.add_argument('-r', '--runs', type=str, help='[all] Run name(s) to work on. If blank, will iterate over all runs in project.', nargs='?', default='')
parser.add_argument('command', type=str, choices=['info', 'filter', 'identify_abundant_barcodes', 'sort', 'quantify', 'aggregate', 'build_index', 'get_reads', 'output_barcode_fastq'])
parser.add_argument('--total-workers', type=int, help='[all] Total workers that are working together. This takes precedence over barcodes-per-worker.', default=1)
parser.add_argument('--worker-index', type=int, help='[all] Index of current worker (the first worker should have index 0).', default=0)
parser.add_argument('--min-reads', type=int, help='[quantify] Minimum number of reads for barcode to be processed', nargs='?', default=750)
parser.add_argument('--max-reads', type=int, help='[quantify] Maximum number of reads for barcode to be processed', nargs='?', default=100000000)
parser.add_argument('--min-counts', type=int, help='[aggregate] Minimun number of UMIFM counts for barcode to be aggregated', nargs='?', default=0)
parser.add_argument('--analysis-prefix', type=str, help='[quantify/aggregate/convert_bam/merge_bam] Prefix for analysis files.', nargs='?', default='')
parser.add_argument('--no-bam', help='[quantify] Do not output alignments to bam file.', action='store_true')
parser.add_argument('--genome-fasta-gz', help='[build_index] Path to gzipped soft-masked genomic FASTA file.')
parser.add_argument('--ensembl-gtf-gz', help='[build_index] Path to gzipped ENSEMBL GTF file. ')
parser.add_argument('--mode', help='[build_index] Stringency mode for transcriptome build. [strict|all_ensembl]', default='strict')
parser.add_argument('--override-yaml', help="[all] Dictionnary to update project YAML with.. [You don't need this.]", nargs='?', default='')
args = parser.parse_args()
project = IndropsProject(args.project)
if args.override_yaml:
override = eval(args.override_yaml)
if 'paths' in override:
project.yaml['paths'].update(override['paths'])
if 'parameters' in override:
for k,v in override['parameters'].items():
project.yaml['parameters'][k].update(v)
if hasattr(project, '_paths'):
del project._paths
if hasattr(project, '_parameters'):
del project._parameters
target_libraries = []
if args.libraries:
for lib in args.libraries.split(','):
assert lib in project.libraries
if lib not in target_libraries:
target_libraries.append(lib)
else:
target_libraries = project.libraries.keys()
lib_query = set(target_libraries)
target_runs = []
if args.runs:
for run in args.runs.split(','):
assert run in project.runs
target_runs.append(run)
else:
target_runs = project.runs.keys()
target_library_parts = []
for lib in target_libraries:
for pi, part in enumerate(project.libraries[lib].parts):
if part.run_name in target_runs:
target_library_parts.append((lib, pi))
if args.command == 'info':
print_to_stderr('Project Name: ' + project.name)
target_run_parts = []
for run in target_runs:
target_run_parts += [part for part in project.runs[run] if part.contains_library_in_query(lib_query)]
print_to_stderr('Total library parts in search query: ' + str(len(target_run_parts)))
elif args.command == 'filter':
target_run_parts = []
for run in target_runs:
target_run_parts += [part for part in project.runs[run] if part.contains_library_in_query(lib_query)]
for part in worker_filter(target_run_parts, args.worker_index, args.total_workers):
print_to_stderr('Filtering run "%s", library "%s", part "%s"' % (part.run_name, part.library_name if hasattr(part, 'library_name') else 'N/A', part.part_name))
part.filter_and_count_reads()
elif args.command == 'identify_abundant_barcodes':
for library in worker_filter(target_libraries, args.worker_index, args.total_workers):
project.libraries[library].identify_abundant_barcodes()
elif args.command == 'sort':
for library, part_index in worker_filter(target_library_parts, args.worker_index, args.total_workers):
print_to_stderr('Sorting %s, part "%s"' % (library, project.libraries[library].parts[part_index].filtered_fastq_filename))
project.libraries[library].sort_reads_by_barcode(index=part_index)
elif args.command == 'quantify':
for library in target_libraries:
project.libraries[library].quantify_expression(worker_index=args.worker_index, total_workers=args.total_workers,
min_reads=args.min_reads, max_reads=args.max_reads, min_counts=args.min_counts,
analysis_prefix=args.analysis_prefix,
no_bam=args.no_bam, run_filter=target_runs)
for part in project.libraries[library].parts:
if hasattr(part, '_sorted_index'):
del part._sorted_index
elif args.command == 'aggregate':
for library in target_libraries:
project.libraries[library].aggregate_counts(analysis_prefix=args.analysis_prefix)
elif args.command == 'build_index':
project.build_transcriptome(args.genome_fasta_gz, args.ensembl_gtf_gz, mode=args.mode)
elif args.command == 'get_reads':
for library in target_libraries:
sorted_barcode_names = project.libraries[library].sorted_barcode_names(min_reads=args.min_reads, max_reads=args.max_reads)
for bc in sorted_barcode_names:
for line in project.libraries[library].get_reads_for_barcode(bc, run_filter=target_runs):
sys.stdout.write(line)
for part in project.libraries[library].parts:
if hasattr(part, '_sorted_index'):
del part._sorted_index
elif args.command == 'output_barcode_fastq':
for library in target_libraries:
project.libraries[library].output_barcode_fastq(worker_index=args.worker_index, total_workers=args.total_workers,
min_reads=args.min_reads, max_reads=args.max_reads, analysis_prefix=args.analysis_prefix, run_filter=target_runs)