Diff of /README.md [000000] .. [074b22]

Switch to unified view

a b/README.md
1
<div class="sc-jegwdG lhLRCf"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-davvxH eCVTlP"><div class="sc-jCNfQM ikRdXB"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-gVIFzB gQKGyV"><p>🦴 <strong>Bone Fracture X-ray Dataset: Simple vs. Comminuted Fractures</strong> 🦴</p>
2
<p>πŸš€ Dive into a comprehensive dataset of X-ray images specifically curated for <strong>bone fracture classification</strong>, distinguishing between <strong>simple</strong> and <strong>comminuted</strong> fractures! This dataset is an invaluable resource for researchers and developers aiming to build and evaluate machine learning models in medical imaging.</p>
3
<p>πŸ§‘β€πŸ”¬ <strong>Contributors:</strong> Fahim Faisal Talha Talha, Md Soroar Jahan, Mayen Uddin Mojumdar<br>
4
πŸ“… <strong>Published:</strong> December 3, 2024<br>
5
<strong>Version:</strong> v3<br>
6
πŸ”— <strong>DOI:</strong> 10.17632/vg95gvhj3y.3</p>
7
<h2>πŸ” Dataset Overview</h2>
8
<p>This dataset is meticulously organized to facilitate the development of robust models for <strong>image classification</strong>, <strong>segmentation</strong>, and <strong>fracture type recognition</strong>. It comprises high-quality X-ray images along with a substantial set of <strong>augmented images</strong>, ensuring a diverse and challenging training environment.</p>
9
<h2>🦴 Fracture Categories</h2>
10
<ol>
11
<li><p><strong>Simple Fracture:</strong></p>
12
<ul>
13
<li><strong>Source:</strong> Exclusively sourced from hospital records for high clinical relevance.</li>
14
<li><strong>Original Images:</strong> <strong>1,211</strong> images.</li>
15
<li><strong>Augmented Images:</strong> <strong>6,311</strong> images.</li>
16
<li><strong>Total Images:</strong> <strong>7,522</strong> images.</li></ul></li>
17
<li><p><strong>Comminuted Fracture:</strong></p>
18
<ul>
19
<li><strong>Source:</strong> A blend of hospital-sourced images and web-sourced images (approximately one-tenth from web pages) to represent a broader range of cases.</li>
20
<li><strong>Original Images:</strong> <strong>1,173</strong> images.</li>
21
<li><strong>Augmented Images:</strong> <strong>7,366</strong> images.</li>
22
<li><strong>Total Images:</strong> <strong>8,539</strong> images.</li></ul></li>
23
</ol>
24
<h2>✨ Key Features</h2>
25
<ul>
26
<li><strong>Number of Original Images:</strong> <strong>2,384</strong></li>
27
<li><strong>Number of Augmented Images:</strong> <strong>13,677</strong></li>
28
<li><strong>Total Dataset Size:</strong> <strong>16,061</strong> images (<strong>Original</strong> + <strong>Augmented</strong>)</li>
29
<li><strong>File Format:</strong> JPG</li>
30
</ul>
31
<h2>πŸ”„ Augmentation Techniques</h2>
32
<p>To enhance the diversity and robustness of the dataset, the following augmentation techniques were applied:</p>
33
<ul>
34
<li><strong>Zoom:</strong> Randomized scaling to simulate different viewing distances.</li>
35
<li><strong>Rotation:</strong> Rotations up to Β±30Β° to account for variations in image orientation.</li>
36
<li><strong>Brightness and Contrast Adjustments:</strong> Random adjustments within the 80%–120% range to mimic varying lighting conditions.</li>
37
<li><strong>Flips:</strong> Both vertical and horizontal flips to introduce symmetry variations.</li>
38
</ul>
39
<h2>πŸ—“οΈ Update Details (Version 3)</h2>
40
<ul>
41
<li><strong>Original Submission Date:</strong> November 15, 2024</li>
42
<li><strong>Update Date:</strong> December 2, 2024</li>
43
</ul>
44
<p><strong>Changes in This Version:</strong></p>
45
<ul>
46
<li><strong>Expanded Dataset Size:</strong> Increased significantly from 6,798 to <strong>16,061</strong> total images.</li>
47
<li><strong>Augmented Images:</strong><ul>
48
<li><strong>Simple Fracture:</strong> Increased from 3,280 to <strong>6,311</strong> images.</li>
49
<li><strong>Comminuted Fracture:</strong> Increased from 2,900 to <strong>7,366</strong> images.</li></ul></li>
50
<li><strong>Augmentation Enhancements:</strong> Additional transformations were implemented to ensure a wider variety of realistic training images.</li>
51
</ul>
52
<h2>🎯 Applications</h2>
53
<p>This dataset holds immense potential for various applications, including:</p>
54
<ul>
55
<li><strong>Medical Imaging:</strong> Train and evaluate advanced models for accurate fracture classification and identification.</li>
56
<li><strong>Healthcare Technology:</strong> Support the development of innovative diagnostic tools and mobile applications for real-time fracture detection, potentially improving patient care.</li>
57
<li><strong>Medical Research:</strong> Facilitate a deeper understanding of fracture patterns and their visual characteristics.</li>
58
</ul>
59
<h2>πŸ₯ Dataset Collection</h2>
60
<ul>
61
<li><strong>Simple Fracture Images:</strong> Sourced directly from hospitals to guarantee clinical accuracy and relevance.</li>
62
<li><strong>Comminuted Fracture Images:</strong> Obtained through a combination of hospital records and diverse web sources to represent a wide spectrum of imaging scenarios.</li>
63
</ul>
64
<h2>πŸ’‘ Realistic Scenarios</h2>
65
<p>The dataset is designed to simulate real-world clinical environments, featuring variations in lighting conditions, image orientations, and overall imaging environments. This approach ensures that models trained on this data are robust and generalizable.</p>
66
<h2>πŸ“œ Citation</h2>
67
<p>Talha, Fahim Faisal Talha; Jahan, Md Soroar; Mojumdar, Mayen Uddin (2024), β€œBone Fracture X-ray Dataset: Simple vs. Comminuted Fractures”, Mendeley Data, V3, doi: 10.17632/vg95gvhj3y.3</p>
68
<p>πŸ™ If you find this dataset valuable for your research, please <strong>upvote</strong>! πŸ‘ Your support is greatly appreciated! 😊</p></div></div></div>