Diff of /README.md [000000] .. [074b22]

Switch to side-by-side view

--- a
+++ b/README.md
@@ -0,0 +1,68 @@
+<div class="sc-jegwdG lhLRCf"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-davvxH eCVTlP"><div class="sc-jCNfQM ikRdXB"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-gVIFzB gQKGyV"><p>🦴 <strong>Bone Fracture X-ray Dataset: Simple vs. Comminuted Fractures</strong> 🦴</p>
+<p>πŸš€ Dive into a comprehensive dataset of X-ray images specifically curated for <strong>bone fracture classification</strong>, distinguishing between <strong>simple</strong> and <strong>comminuted</strong> fractures! This dataset is an invaluable resource for researchers and developers aiming to build and evaluate machine learning models in medical imaging.</p>
+<p>πŸ§‘β€πŸ”¬ <strong>Contributors:</strong> Fahim Faisal Talha Talha, Md Soroar Jahan, Mayen Uddin Mojumdar<br>
+πŸ“… <strong>Published:</strong> December 3, 2024<br>
+<strong>Version:</strong> v3<br>
+πŸ”— <strong>DOI:</strong> 10.17632/vg95gvhj3y.3</p>
+<h2>πŸ” Dataset Overview</h2>
+<p>This dataset is meticulously organized to facilitate the development of robust models for <strong>image classification</strong>, <strong>segmentation</strong>, and <strong>fracture type recognition</strong>. It comprises high-quality X-ray images along with a substantial set of <strong>augmented images</strong>, ensuring a diverse and challenging training environment.</p>
+<h2>🦴 Fracture Categories</h2>
+<ol>
+<li><p><strong>Simple Fracture:</strong></p>
+<ul>
+<li><strong>Source:</strong> Exclusively sourced from hospital records for high clinical relevance.</li>
+<li><strong>Original Images:</strong> <strong>1,211</strong> images.</li>
+<li><strong>Augmented Images:</strong> <strong>6,311</strong> images.</li>
+<li><strong>Total Images:</strong> <strong>7,522</strong> images.</li></ul></li>
+<li><p><strong>Comminuted Fracture:</strong></p>
+<ul>
+<li><strong>Source:</strong> A blend of hospital-sourced images and web-sourced images (approximately one-tenth from web pages) to represent a broader range of cases.</li>
+<li><strong>Original Images:</strong> <strong>1,173</strong> images.</li>
+<li><strong>Augmented Images:</strong> <strong>7,366</strong> images.</li>
+<li><strong>Total Images:</strong> <strong>8,539</strong> images.</li></ul></li>
+</ol>
+<h2>✨ Key Features</h2>
+<ul>
+<li><strong>Number of Original Images:</strong> <strong>2,384</strong></li>
+<li><strong>Number of Augmented Images:</strong> <strong>13,677</strong></li>
+<li><strong>Total Dataset Size:</strong> <strong>16,061</strong> images (<strong>Original</strong> + <strong>Augmented</strong>)</li>
+<li><strong>File Format:</strong> JPG</li>
+</ul>
+<h2>πŸ”„ Augmentation Techniques</h2>
+<p>To enhance the diversity and robustness of the dataset, the following augmentation techniques were applied:</p>
+<ul>
+<li><strong>Zoom:</strong> Randomized scaling to simulate different viewing distances.</li>
+<li><strong>Rotation:</strong> Rotations up to Β±30Β° to account for variations in image orientation.</li>
+<li><strong>Brightness and Contrast Adjustments:</strong> Random adjustments within the 80%–120% range to mimic varying lighting conditions.</li>
+<li><strong>Flips:</strong> Both vertical and horizontal flips to introduce symmetry variations.</li>
+</ul>
+<h2>πŸ—“οΈ Update Details (Version 3)</h2>
+<ul>
+<li><strong>Original Submission Date:</strong> November 15, 2024</li>
+<li><strong>Update Date:</strong> December 2, 2024</li>
+</ul>
+<p><strong>Changes in This Version:</strong></p>
+<ul>
+<li><strong>Expanded Dataset Size:</strong> Increased significantly from 6,798 to <strong>16,061</strong> total images.</li>
+<li><strong>Augmented Images:</strong><ul>
+<li><strong>Simple Fracture:</strong> Increased from 3,280 to <strong>6,311</strong> images.</li>
+<li><strong>Comminuted Fracture:</strong> Increased from 2,900 to <strong>7,366</strong> images.</li></ul></li>
+<li><strong>Augmentation Enhancements:</strong> Additional transformations were implemented to ensure a wider variety of realistic training images.</li>
+</ul>
+<h2>🎯 Applications</h2>
+<p>This dataset holds immense potential for various applications, including:</p>
+<ul>
+<li><strong>Medical Imaging:</strong> Train and evaluate advanced models for accurate fracture classification and identification.</li>
+<li><strong>Healthcare Technology:</strong> Support the development of innovative diagnostic tools and mobile applications for real-time fracture detection, potentially improving patient care.</li>
+<li><strong>Medical Research:</strong> Facilitate a deeper understanding of fracture patterns and their visual characteristics.</li>
+</ul>
+<h2>πŸ₯ Dataset Collection</h2>
+<ul>
+<li><strong>Simple Fracture Images:</strong> Sourced directly from hospitals to guarantee clinical accuracy and relevance.</li>
+<li><strong>Comminuted Fracture Images:</strong> Obtained through a combination of hospital records and diverse web sources to represent a wide spectrum of imaging scenarios.</li>
+</ul>
+<h2>πŸ’‘ Realistic Scenarios</h2>
+<p>The dataset is designed to simulate real-world clinical environments, featuring variations in lighting conditions, image orientations, and overall imaging environments. This approach ensures that models trained on this data are robust and generalizable.</p>
+<h2>πŸ“œ Citation</h2>
+<p>Talha, Fahim Faisal Talha; Jahan, Md Soroar; Mojumdar, Mayen Uddin (2024), β€œBone Fracture X-ray Dataset: Simple vs. Comminuted Fractures”, Mendeley Data, V3, doi: 10.17632/vg95gvhj3y.3</p>
+<p>πŸ™ If you find this dataset valuable for your research, please <strong>upvote</strong>! πŸ‘ Your support is greatly appreciated! 😊</p></div></div></div>
\ No newline at end of file