--- a +++ b/README.md @@ -0,0 +1,16 @@ +<div class="sc-jegwdG lhLRCf"><div class="sc-UEtKG dGqiYy sc-flttKd cguEtd"><div class="sc-fqwslf gsqkEc"><div class="sc-cBQMlg kAHhUk"><h2 class="sc-dcKlJK sc-cVttbi gqEuPW ksnHgj">About Dataset</h2></div></div></div><div class="sc-davvxH eCVTlP"><div class="sc-jCNfQM dTyvWO"><div style="min-height: 80px;"><div class="sc-etVRix jqYJaa sc-gVIFzB gQKGyV"><h3>Context</h3> +<p>Predicting the ovarian cancer using machine learning.</p> +<h3>Content</h3> +<p>Supplementary data 1: <br> +It contains the original raw data.<br> +Supplementary data 2:<br> +It contains a list of biomarkers, their abbreviations, and their descriptions used in the study.<br> +Supplementary data 3:<br> +It contains the imputed version of the training data without the biomarker CA72-4.<br> +Supplementary data 4:<br> +It contains the raw training data.<br> +Supplementary data 5:<br> +It contains the raw test data.</p> +<p>TARGET COLUMN = TYPE (1 - BOT --- Benign Ovarian Tumor and 0 - OC --- Ovarian Cancer)</p> +<h3>Acknowledgements</h3> +<p>Mi, Qi; Jiang, Jingting; Znati, Ty; Fan, Zhenjiang; Li, Jundong; Xu, Bin; Chen, Lujun; Zheng, Xiao; Lu, Mingyang (2020), “Data for: USING MACHINE LEARNING TO PREDICT OVARIAN CANCER”, Mendeley Data, V11, doi: 10.17632/th7fztbrv9.11</p></div></div></div> \ No newline at end of file